Effects of backwashing strategy and dissolved oxygen on arsenic removal to meet drinking water standards in a sulfidogenic attached growth reactor

[Display omitted] •Effects of air as substitute to nitrogen on arsenic removal in absence of iron studied.•Effects of dissolved oxygen on arsenic removal in an anaerobic AGR investigated.•Use of air in backwashing shifted the TEAP zones of sulphate reduction.•An overlapping of DO and nitrate TEAP zo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2019-05, Vol.369, p.309-317
Hauptverfasser: Shakya, Arvind Kumar, Ghosh, Pranab Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue
container_start_page 309
container_title Journal of hazardous materials
container_volume 369
creator Shakya, Arvind Kumar
Ghosh, Pranab Kumar
description [Display omitted] •Effects of air as substitute to nitrogen on arsenic removal in absence of iron studied.•Effects of dissolved oxygen on arsenic removal in an anaerobic AGR investigated.•Use of air in backwashing shifted the TEAP zones of sulphate reduction.•An overlapping of DO and nitrate TEAP zones was observed.•Bacterial genera capable of using multiple electron acceptors were detected. Efficiency and feasibility of two backwashing methods (water-nitrogen and water-air assisted) on arsenic and its co-pollutants removal were assessed through running a sulfidogenic attached growth reactor (AGR) treating arsenic spiked simulated groundwater for about 600 days. Replacing water with nitrogen assisted backwashing (WNAB) by water with air assisted backwashing (WAAB) introduced dissolved oxygen (DO) as an additional electron acceptor, which required an increased empty bed contact time (EBCT) to retain the entire terminal electron accepting zones (DO, nitrate, arsenate and sulfate) within the reactor. Removal of arsenic to below 10 μg/L required a longer EBCT at higher influent DO in backwash water. Notably, MiSeq sequencing analysis confirmed the presence of diverse bacterial community on biofilm which can utilize multiple terminal electron acceptors present in the bioreactor.
doi_str_mv 10.1016/j.jhazmat.2019.02.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2184140216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389419301487</els_id><sourcerecordid>2184140216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8d5e70685491bc34ec4c9cd182521de0c83ba03bbc537f78f5c99a375cd795863</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhi0EYsvCTwD5yCVhHNuNc0JotXxIK3GBs-XYk9TdJF5st93yM_jFuLRw5TSX931GMw8hrxnUDNj63bbebszP2eS6AdbV0NTA1BOyYqrlFed8_ZSsgIOouOrEFXmR0hYAWCvFc3LFoVUATbsiv26HAW1ONAy0N_b-YNLGLyNNOZqM45GaxVHnUwrTHh0Nj8cRFxoWamLCxVsacQ57M9Ec6IyYqYt-uT8RDqUfC6cATHSJ-tKhaTcN3oXxT9XkbOymUMcYDnlTUMbmEF-SZ4OZEr66zGvy_ePtt5vP1d3XT19uPtxVVoDIlXISW1grKTrWWy7QCttZx1QjG-YQrOK9Ad73VvJ2aNUgbdcZ3krr2k6qNb8mb8_chxh-7DBlPftkcZrMgmGXdMOUYAIadorKc9TGkFLEQT9EP5t41Az0SYfe6osOfdKhodFFR-m9uazY9TO6f62__y-B9-cAlkP3HqNO1uNi0flYtGgX_H9W_AZLkaHG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184140216</pqid></control><display><type>article</type><title>Effects of backwashing strategy and dissolved oxygen on arsenic removal to meet drinking water standards in a sulfidogenic attached growth reactor</title><source>Elsevier ScienceDirect Journals</source><creator>Shakya, Arvind Kumar ; Ghosh, Pranab Kumar</creator><creatorcontrib>Shakya, Arvind Kumar ; Ghosh, Pranab Kumar</creatorcontrib><description>[Display omitted] •Effects of air as substitute to nitrogen on arsenic removal in absence of iron studied.•Effects of dissolved oxygen on arsenic removal in an anaerobic AGR investigated.•Use of air in backwashing shifted the TEAP zones of sulphate reduction.•An overlapping of DO and nitrate TEAP zones was observed.•Bacterial genera capable of using multiple electron acceptors were detected. Efficiency and feasibility of two backwashing methods (water-nitrogen and water-air assisted) on arsenic and its co-pollutants removal were assessed through running a sulfidogenic attached growth reactor (AGR) treating arsenic spiked simulated groundwater for about 600 days. Replacing water with nitrogen assisted backwashing (WNAB) by water with air assisted backwashing (WAAB) introduced dissolved oxygen (DO) as an additional electron acceptor, which required an increased empty bed contact time (EBCT) to retain the entire terminal electron accepting zones (DO, nitrate, arsenate and sulfate) within the reactor. Removal of arsenic to below 10 μg/L required a longer EBCT at higher influent DO in backwash water. Notably, MiSeq sequencing analysis confirmed the presence of diverse bacterial community on biofilm which can utilize multiple terminal electron acceptors present in the bioreactor.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2019.02.018</identifier><identifier>PMID: 30780027</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Arsenic ; Backwashing ; Empty bed contact time ; Sulfidogenic reactor ; Terminal electron accepting zones</subject><ispartof>Journal of hazardous materials, 2019-05, Vol.369, p.309-317</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-8d5e70685491bc34ec4c9cd182521de0c83ba03bbc537f78f5c99a375cd795863</citedby><cites>FETCH-LOGICAL-c404t-8d5e70685491bc34ec4c9cd182521de0c83ba03bbc537f78f5c99a375cd795863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389419301487$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30780027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shakya, Arvind Kumar</creatorcontrib><creatorcontrib>Ghosh, Pranab Kumar</creatorcontrib><title>Effects of backwashing strategy and dissolved oxygen on arsenic removal to meet drinking water standards in a sulfidogenic attached growth reactor</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>[Display omitted] •Effects of air as substitute to nitrogen on arsenic removal in absence of iron studied.•Effects of dissolved oxygen on arsenic removal in an anaerobic AGR investigated.•Use of air in backwashing shifted the TEAP zones of sulphate reduction.•An overlapping of DO and nitrate TEAP zones was observed.•Bacterial genera capable of using multiple electron acceptors were detected. Efficiency and feasibility of two backwashing methods (water-nitrogen and water-air assisted) on arsenic and its co-pollutants removal were assessed through running a sulfidogenic attached growth reactor (AGR) treating arsenic spiked simulated groundwater for about 600 days. Replacing water with nitrogen assisted backwashing (WNAB) by water with air assisted backwashing (WAAB) introduced dissolved oxygen (DO) as an additional electron acceptor, which required an increased empty bed contact time (EBCT) to retain the entire terminal electron accepting zones (DO, nitrate, arsenate and sulfate) within the reactor. Removal of arsenic to below 10 μg/L required a longer EBCT at higher influent DO in backwash water. Notably, MiSeq sequencing analysis confirmed the presence of diverse bacterial community on biofilm which can utilize multiple terminal electron acceptors present in the bioreactor.</description><subject>Arsenic</subject><subject>Backwashing</subject><subject>Empty bed contact time</subject><subject>Sulfidogenic reactor</subject><subject>Terminal electron accepting zones</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P0zAQhi0EYsvCTwD5yCVhHNuNc0JotXxIK3GBs-XYk9TdJF5st93yM_jFuLRw5TSX931GMw8hrxnUDNj63bbebszP2eS6AdbV0NTA1BOyYqrlFed8_ZSsgIOouOrEFXmR0hYAWCvFc3LFoVUATbsiv26HAW1ONAy0N_b-YNLGLyNNOZqM45GaxVHnUwrTHh0Nj8cRFxoWamLCxVsacQ57M9Ec6IyYqYt-uT8RDqUfC6cATHSJ-tKhaTcN3oXxT9XkbOymUMcYDnlTUMbmEF-SZ4OZEr66zGvy_ePtt5vP1d3XT19uPtxVVoDIlXISW1grKTrWWy7QCttZx1QjG-YQrOK9Ad73VvJ2aNUgbdcZ3krr2k6qNb8mb8_chxh-7DBlPftkcZrMgmGXdMOUYAIadorKc9TGkFLEQT9EP5t41Az0SYfe6osOfdKhodFFR-m9uazY9TO6f62__y-B9-cAlkP3HqNO1uNi0flYtGgX_H9W_AZLkaHG</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>Shakya, Arvind Kumar</creator><creator>Ghosh, Pranab Kumar</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190505</creationdate><title>Effects of backwashing strategy and dissolved oxygen on arsenic removal to meet drinking water standards in a sulfidogenic attached growth reactor</title><author>Shakya, Arvind Kumar ; Ghosh, Pranab Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8d5e70685491bc34ec4c9cd182521de0c83ba03bbc537f78f5c99a375cd795863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arsenic</topic><topic>Backwashing</topic><topic>Empty bed contact time</topic><topic>Sulfidogenic reactor</topic><topic>Terminal electron accepting zones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shakya, Arvind Kumar</creatorcontrib><creatorcontrib>Ghosh, Pranab Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shakya, Arvind Kumar</au><au>Ghosh, Pranab Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of backwashing strategy and dissolved oxygen on arsenic removal to meet drinking water standards in a sulfidogenic attached growth reactor</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2019-05-05</date><risdate>2019</risdate><volume>369</volume><spage>309</spage><epage>317</epage><pages>309-317</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>[Display omitted] •Effects of air as substitute to nitrogen on arsenic removal in absence of iron studied.•Effects of dissolved oxygen on arsenic removal in an anaerobic AGR investigated.•Use of air in backwashing shifted the TEAP zones of sulphate reduction.•An overlapping of DO and nitrate TEAP zones was observed.•Bacterial genera capable of using multiple electron acceptors were detected. Efficiency and feasibility of two backwashing methods (water-nitrogen and water-air assisted) on arsenic and its co-pollutants removal were assessed through running a sulfidogenic attached growth reactor (AGR) treating arsenic spiked simulated groundwater for about 600 days. Replacing water with nitrogen assisted backwashing (WNAB) by water with air assisted backwashing (WAAB) introduced dissolved oxygen (DO) as an additional electron acceptor, which required an increased empty bed contact time (EBCT) to retain the entire terminal electron accepting zones (DO, nitrate, arsenate and sulfate) within the reactor. Removal of arsenic to below 10 μg/L required a longer EBCT at higher influent DO in backwash water. Notably, MiSeq sequencing analysis confirmed the presence of diverse bacterial community on biofilm which can utilize multiple terminal electron acceptors present in the bioreactor.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30780027</pmid><doi>10.1016/j.jhazmat.2019.02.018</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2019-05, Vol.369, p.309-317
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_2184140216
source Elsevier ScienceDirect Journals
subjects Arsenic
Backwashing
Empty bed contact time
Sulfidogenic reactor
Terminal electron accepting zones
title Effects of backwashing strategy and dissolved oxygen on arsenic removal to meet drinking water standards in a sulfidogenic attached growth reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20backwashing%20strategy%20and%20dissolved%20oxygen%20on%20arsenic%20removal%20to%20meet%20drinking%20water%20standards%20in%20a%20sulfidogenic%20attached%20growth%20reactor&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Shakya,%20Arvind%20Kumar&rft.date=2019-05-05&rft.volume=369&rft.spage=309&rft.epage=317&rft.pages=309-317&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2019.02.018&rft_dat=%3Cproquest_cross%3E2184140216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184140216&rft_id=info:pmid/30780027&rft_els_id=S0304389419301487&rfr_iscdi=true