Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection

Background. We previously demonstrated that step training leads to reorganization of neuronal networks in the lumbar spinal cord of rodents after a hemisection (HX) injury and step training, including increases excitability of spinally evoked potentials in hindlimb motor neurons. Methods. In this st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurorehabilitation and neural repair 2019-03, Vol.33 (3), p.225-231
Hauptverfasser: Kobayakawa, Kazu, DePetro, Kyleigh Alexis, Zhong, Hui, Pham, Bau, Hara, Masamitsu, Harada, Akihito, Nogami, Jumpei, Ohkawa, Yasuyuki, Edgerton, V. Reggie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 3
container_start_page 225
container_title Neurorehabilitation and neural repair
container_volume 33
creator Kobayakawa, Kazu
DePetro, Kyleigh Alexis
Zhong, Hui
Pham, Bau
Hara, Masamitsu
Harada, Akihito
Nogami, Jumpei
Ohkawa, Yasuyuki
Edgerton, V. Reggie
description Background. We previously demonstrated that step training leads to reorganization of neuronal networks in the lumbar spinal cord of rodents after a hemisection (HX) injury and step training, including increases excitability of spinally evoked potentials in hindlimb motor neurons. Methods. In this study, we investigated changes in RNA expression and synapse number using RNA-Seq and immunohistochemistry of the lumbar spinal cord 23 days after a mid-thoracic HX in rats with and without post-HX step training. Results. Gene Ontology (GO) term clustering demonstrated that expression levels of 36 synapse-related genes were increased in trained compared with nontrained rats. Many synaptic genes were upregulated in trained rats, but Lrrc4 (coding NGL-2) was the most highly expressed in the lumbar spinal cord caudal to the HX lesion. Trained rats also had a higher number of NGL-2/synaptophysin synaptic puncta in the lumbar ventral horn. Conclusions. Our findings demonstrate clear activity-dependent regulation of synapse-related gene expression post-HX. This effect is consistent with the concept that activity-dependent phenomena can provide a mechanistic drive for epigenetic neuronal group selection in the shaping of the reorganization of synaptic networks to learn the locomotion task being trained after spinal cord injury.
doi_str_mv 10.1177/1545968319829456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2184139804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1545968319829456</sage_id><sourcerecordid>2184139804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-3fec9a9f09a920a6258f0d931d19f15966bcc4b157612c4fca2b4d931c99def43</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwMyGPLAHbcRJ7rKrSVopgaBFj5Dh26yqNg-1I9N-TqIUBieXupPfd090D4B6jJ4yz7BknNOEpizFnhNMkvQBjnCQkShmll8NMk2jQR-DG-z1CJGYcXYNRjDJGUJaOwS630h5ssA5unDCNabZw1UinhFcero-NaIORcB1cJ0PnFPwwYQeXZruDr4s8InD-1TrlvbENnOqgHFy3phE1nFlXwaU6GK9k6NVbcKVF7dXduU_A-8t8M1tG-dtiNZvmkYwzHqJYK8kF16gvBImUJEyjise4wlzj_tm0lJKWOMlSTCTVUpCSDrrkvFKaxhPwePJtnf3slA9Ff4JUdS0aZTtfEMwojjlDA4pOqHTWe6d00TpzEO5YYFQM-RZ_8-1XHs7uXXlQ1e_CT6A9EJ0AL7aq2NvO9WH4_w2_AdHlgr8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2184139804</pqid></control><display><type>article</type><title>Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection</title><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><creator>Kobayakawa, Kazu ; DePetro, Kyleigh Alexis ; Zhong, Hui ; Pham, Bau ; Hara, Masamitsu ; Harada, Akihito ; Nogami, Jumpei ; Ohkawa, Yasuyuki ; Edgerton, V. Reggie</creator><creatorcontrib>Kobayakawa, Kazu ; DePetro, Kyleigh Alexis ; Zhong, Hui ; Pham, Bau ; Hara, Masamitsu ; Harada, Akihito ; Nogami, Jumpei ; Ohkawa, Yasuyuki ; Edgerton, V. Reggie</creatorcontrib><description>Background. We previously demonstrated that step training leads to reorganization of neuronal networks in the lumbar spinal cord of rodents after a hemisection (HX) injury and step training, including increases excitability of spinally evoked potentials in hindlimb motor neurons. Methods. In this study, we investigated changes in RNA expression and synapse number using RNA-Seq and immunohistochemistry of the lumbar spinal cord 23 days after a mid-thoracic HX in rats with and without post-HX step training. Results. Gene Ontology (GO) term clustering demonstrated that expression levels of 36 synapse-related genes were increased in trained compared with nontrained rats. Many synaptic genes were upregulated in trained rats, but Lrrc4 (coding NGL-2) was the most highly expressed in the lumbar spinal cord caudal to the HX lesion. Trained rats also had a higher number of NGL-2/synaptophysin synaptic puncta in the lumbar ventral horn. Conclusions. Our findings demonstrate clear activity-dependent regulation of synapse-related gene expression post-HX. This effect is consistent with the concept that activity-dependent phenomena can provide a mechanistic drive for epigenetic neuronal group selection in the shaping of the reorganization of synaptic networks to learn the locomotion task being trained after spinal cord injury.</description><identifier>ISSN: 1545-9683</identifier><identifier>EISSN: 1552-6844</identifier><identifier>DOI: 10.1177/1545968319829456</identifier><identifier>PMID: 30782076</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Neurorehabilitation and neural repair, 2019-03, Vol.33 (3), p.225-231</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-3fec9a9f09a920a6258f0d931d19f15966bcc4b157612c4fca2b4d931c99def43</citedby><cites>FETCH-LOGICAL-c379t-3fec9a9f09a920a6258f0d931d19f15966bcc4b157612c4fca2b4d931c99def43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1545968319829456$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1545968319829456$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30782076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayakawa, Kazu</creatorcontrib><creatorcontrib>DePetro, Kyleigh Alexis</creatorcontrib><creatorcontrib>Zhong, Hui</creatorcontrib><creatorcontrib>Pham, Bau</creatorcontrib><creatorcontrib>Hara, Masamitsu</creatorcontrib><creatorcontrib>Harada, Akihito</creatorcontrib><creatorcontrib>Nogami, Jumpei</creatorcontrib><creatorcontrib>Ohkawa, Yasuyuki</creatorcontrib><creatorcontrib>Edgerton, V. Reggie</creatorcontrib><title>Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection</title><title>Neurorehabilitation and neural repair</title><addtitle>Neurorehabil Neural Repair</addtitle><description>Background. We previously demonstrated that step training leads to reorganization of neuronal networks in the lumbar spinal cord of rodents after a hemisection (HX) injury and step training, including increases excitability of spinally evoked potentials in hindlimb motor neurons. Methods. In this study, we investigated changes in RNA expression and synapse number using RNA-Seq and immunohistochemistry of the lumbar spinal cord 23 days after a mid-thoracic HX in rats with and without post-HX step training. Results. Gene Ontology (GO) term clustering demonstrated that expression levels of 36 synapse-related genes were increased in trained compared with nontrained rats. Many synaptic genes were upregulated in trained rats, but Lrrc4 (coding NGL-2) was the most highly expressed in the lumbar spinal cord caudal to the HX lesion. Trained rats also had a higher number of NGL-2/synaptophysin synaptic puncta in the lumbar ventral horn. Conclusions. Our findings demonstrate clear activity-dependent regulation of synapse-related gene expression post-HX. This effect is consistent with the concept that activity-dependent phenomena can provide a mechanistic drive for epigenetic neuronal group selection in the shaping of the reorganization of synaptic networks to learn the locomotion task being trained after spinal cord injury.</description><issn>1545-9683</issn><issn>1552-6844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwMyGPLAHbcRJ7rKrSVopgaBFj5Dh26yqNg-1I9N-TqIUBieXupPfd090D4B6jJ4yz7BknNOEpizFnhNMkvQBjnCQkShmll8NMk2jQR-DG-z1CJGYcXYNRjDJGUJaOwS630h5ssA5unDCNabZw1UinhFcero-NaIORcB1cJ0PnFPwwYQeXZruDr4s8InD-1TrlvbENnOqgHFy3phE1nFlXwaU6GK9k6NVbcKVF7dXduU_A-8t8M1tG-dtiNZvmkYwzHqJYK8kF16gvBImUJEyjise4wlzj_tm0lJKWOMlSTCTVUpCSDrrkvFKaxhPwePJtnf3slA9Ff4JUdS0aZTtfEMwojjlDA4pOqHTWe6d00TpzEO5YYFQM-RZ_8-1XHs7uXXlQ1e_CT6A9EJ0AL7aq2NvO9WH4_w2_AdHlgr8</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Kobayakawa, Kazu</creator><creator>DePetro, Kyleigh Alexis</creator><creator>Zhong, Hui</creator><creator>Pham, Bau</creator><creator>Hara, Masamitsu</creator><creator>Harada, Akihito</creator><creator>Nogami, Jumpei</creator><creator>Ohkawa, Yasuyuki</creator><creator>Edgerton, V. Reggie</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201903</creationdate><title>Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection</title><author>Kobayakawa, Kazu ; DePetro, Kyleigh Alexis ; Zhong, Hui ; Pham, Bau ; Hara, Masamitsu ; Harada, Akihito ; Nogami, Jumpei ; Ohkawa, Yasuyuki ; Edgerton, V. Reggie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-3fec9a9f09a920a6258f0d931d19f15966bcc4b157612c4fca2b4d931c99def43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayakawa, Kazu</creatorcontrib><creatorcontrib>DePetro, Kyleigh Alexis</creatorcontrib><creatorcontrib>Zhong, Hui</creatorcontrib><creatorcontrib>Pham, Bau</creatorcontrib><creatorcontrib>Hara, Masamitsu</creatorcontrib><creatorcontrib>Harada, Akihito</creatorcontrib><creatorcontrib>Nogami, Jumpei</creatorcontrib><creatorcontrib>Ohkawa, Yasuyuki</creatorcontrib><creatorcontrib>Edgerton, V. Reggie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neurorehabilitation and neural repair</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayakawa, Kazu</au><au>DePetro, Kyleigh Alexis</au><au>Zhong, Hui</au><au>Pham, Bau</au><au>Hara, Masamitsu</au><au>Harada, Akihito</au><au>Nogami, Jumpei</au><au>Ohkawa, Yasuyuki</au><au>Edgerton, V. Reggie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection</atitle><jtitle>Neurorehabilitation and neural repair</jtitle><addtitle>Neurorehabil Neural Repair</addtitle><date>2019-03</date><risdate>2019</risdate><volume>33</volume><issue>3</issue><spage>225</spage><epage>231</epage><pages>225-231</pages><issn>1545-9683</issn><eissn>1552-6844</eissn><abstract>Background. We previously demonstrated that step training leads to reorganization of neuronal networks in the lumbar spinal cord of rodents after a hemisection (HX) injury and step training, including increases excitability of spinally evoked potentials in hindlimb motor neurons. Methods. In this study, we investigated changes in RNA expression and synapse number using RNA-Seq and immunohistochemistry of the lumbar spinal cord 23 days after a mid-thoracic HX in rats with and without post-HX step training. Results. Gene Ontology (GO) term clustering demonstrated that expression levels of 36 synapse-related genes were increased in trained compared with nontrained rats. Many synaptic genes were upregulated in trained rats, but Lrrc4 (coding NGL-2) was the most highly expressed in the lumbar spinal cord caudal to the HX lesion. Trained rats also had a higher number of NGL-2/synaptophysin synaptic puncta in the lumbar ventral horn. Conclusions. Our findings demonstrate clear activity-dependent regulation of synapse-related gene expression post-HX. This effect is consistent with the concept that activity-dependent phenomena can provide a mechanistic drive for epigenetic neuronal group selection in the shaping of the reorganization of synaptic networks to learn the locomotion task being trained after spinal cord injury.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>30782076</pmid><doi>10.1177/1545968319829456</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9683
ispartof Neurorehabilitation and neural repair, 2019-03, Vol.33 (3), p.225-231
issn 1545-9683
1552-6844
language eng
recordid cdi_proquest_miscellaneous_2184139804
source SAGE Complete; Alma/SFX Local Collection
title Locomotor Training Increases Synaptic Structure With High NGL-2 Expression After Spinal Cord Hemisection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locomotor%20Training%20Increases%20Synaptic%20Structure%20With%20High%20NGL-2%20Expression%20After%20Spinal%20Cord%20Hemisection&rft.jtitle=Neurorehabilitation%20and%20neural%20repair&rft.au=Kobayakawa,%20Kazu&rft.date=2019-03&rft.volume=33&rft.issue=3&rft.spage=225&rft.epage=231&rft.pages=225-231&rft.issn=1545-9683&rft.eissn=1552-6844&rft_id=info:doi/10.1177/1545968319829456&rft_dat=%3Cproquest_cross%3E2184139804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2184139804&rft_id=info:pmid/30782076&rft_sage_id=10.1177_1545968319829456&rfr_iscdi=true