Gene therapies in canine models for Duchenne muscular dystrophy

Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human genetics 2019-05, Vol.138 (5), p.483-489
Hauptverfasser: Nghiem, Peter P., Kornegay, Joe N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 5
container_start_page 483
container_title Human genetics
container_volume 138
creator Nghiem, Peter P.
Kornegay, Joe N.
description Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.
doi_str_mv 10.1007/s00439-019-01976-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2184135996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A586931378</galeid><sourcerecordid>A586931378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-7bb2caf0a4fce4d8507a3ead54655f5f58aefa2f8fb9202149eb1574ef78f85c3</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVpaCZp_0AXxdBNs3B69bLsVQlpmgYChT7WQpavZhxsaSrZkMmvjyaTNkwJ5SIER9856HIIeUvhlAKojwlA8KYE-nBUVd69IAsqOCspA_6SLIALKCtF1SE5SukGgMqGyVfkkIPiIkML8ukSPRbTCqNZ95iK3hfW-D5rY-hwSIULsfg82xX6rTYnOw8mFt0mTTGsV5vX5MCZIeGbx_uY_Ppy8fP8a3n97fLq_Oy6tEJVU6nallnjwAhnUXS1BGU4mk6KSkqXpzboDHO1axsGjIoGWyqVQKdqV0vLj8mHXe46ht8zpkmPfbI4DMZjmJNmtBaUy6apMvr-H_QmzNHn32VKKaAKmvqJWpoBde9dmKKx21B9Juuq4ZSrLXX6DJWnw7G3waPrs75nONkzZGbC22lp5pT01Y_v-yzbsTaGlCI6vY79aOJGU9DbhvWuYZ3b1Q8N67tseve43dyO2P21_Kk0A3wHpPzklxif1v9P7D0J3K7Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177017098</pqid></control><display><type>article</type><title>Gene therapies in canine models for Duchenne muscular dystrophy</title><source>Springer Online Journals - JUSTICE</source><creator>Nghiem, Peter P. ; Kornegay, Joe N.</creator><creatorcontrib>Nghiem, Peter P. ; Kornegay, Joe N.</creatorcontrib><description>Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.</description><identifier>ISSN: 0340-6717</identifier><identifier>EISSN: 1432-1203</identifier><identifier>DOI: 10.1007/s00439-019-01976-z</identifier><identifier>PMID: 30734120</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal models ; Biomedical and Life Sciences ; Biomedicine ; Canine Genetics ; Dogs ; Duchenne muscular dystrophy ; Duchenne's muscular dystrophy ; Exon skipping ; Gene Function ; Gene therapy ; Genes ; Genome editing ; Human Genetics ; Immunological diseases ; Immunology ; Metabolic Diseases ; Molecular Medicine ; Muscular dystrophy ; Retirement benefits ; Review</subject><ispartof>Human genetics, 2019-05, Vol.138 (5), p.483-489</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Human Genetics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-7bb2caf0a4fce4d8507a3ead54655f5f58aefa2f8fb9202149eb1574ef78f85c3</citedby><cites>FETCH-LOGICAL-c476t-7bb2caf0a4fce4d8507a3ead54655f5f58aefa2f8fb9202149eb1574ef78f85c3</cites><orcidid>0000-0002-8796-8123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00439-019-01976-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00439-019-01976-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30734120$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nghiem, Peter P.</creatorcontrib><creatorcontrib>Kornegay, Joe N.</creatorcontrib><title>Gene therapies in canine models for Duchenne muscular dystrophy</title><title>Human genetics</title><addtitle>Hum Genet</addtitle><addtitle>Hum Genet</addtitle><description>Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.</description><subject>Animal models</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Canine Genetics</subject><subject>Dogs</subject><subject>Duchenne muscular dystrophy</subject><subject>Duchenne's muscular dystrophy</subject><subject>Exon skipping</subject><subject>Gene Function</subject><subject>Gene therapy</subject><subject>Genes</subject><subject>Genome editing</subject><subject>Human Genetics</subject><subject>Immunological diseases</subject><subject>Immunology</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Muscular dystrophy</subject><subject>Retirement benefits</subject><subject>Review</subject><issn>0340-6717</issn><issn>1432-1203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtr3DAUhUVpaCZp_0AXxdBNs3B69bLsVQlpmgYChT7WQpavZhxsaSrZkMmvjyaTNkwJ5SIER9856HIIeUvhlAKojwlA8KYE-nBUVd69IAsqOCspA_6SLIALKCtF1SE5SukGgMqGyVfkkIPiIkML8ukSPRbTCqNZ95iK3hfW-D5rY-hwSIULsfg82xX6rTYnOw8mFt0mTTGsV5vX5MCZIeGbx_uY_Ppy8fP8a3n97fLq_Oy6tEJVU6nallnjwAhnUXS1BGU4mk6KSkqXpzboDHO1axsGjIoGWyqVQKdqV0vLj8mHXe46ht8zpkmPfbI4DMZjmJNmtBaUy6apMvr-H_QmzNHn32VKKaAKmvqJWpoBde9dmKKx21B9Juuq4ZSrLXX6DJWnw7G3waPrs75nONkzZGbC22lp5pT01Y_v-yzbsTaGlCI6vY79aOJGU9DbhvWuYZ3b1Q8N67tseve43dyO2P21_Kk0A3wHpPzklxif1v9P7D0J3K7Z</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Nghiem, Peter P.</creator><creator>Kornegay, Joe N.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8796-8123</orcidid></search><sort><creationdate>20190501</creationdate><title>Gene therapies in canine models for Duchenne muscular dystrophy</title><author>Nghiem, Peter P. ; Kornegay, Joe N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-7bb2caf0a4fce4d8507a3ead54655f5f58aefa2f8fb9202149eb1574ef78f85c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal models</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Canine Genetics</topic><topic>Dogs</topic><topic>Duchenne muscular dystrophy</topic><topic>Duchenne's muscular dystrophy</topic><topic>Exon skipping</topic><topic>Gene Function</topic><topic>Gene therapy</topic><topic>Genes</topic><topic>Genome editing</topic><topic>Human Genetics</topic><topic>Immunological diseases</topic><topic>Immunology</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Muscular dystrophy</topic><topic>Retirement benefits</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nghiem, Peter P.</creatorcontrib><creatorcontrib>Kornegay, Joe N.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nghiem, Peter P.</au><au>Kornegay, Joe N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene therapies in canine models for Duchenne muscular dystrophy</atitle><jtitle>Human genetics</jtitle><stitle>Hum Genet</stitle><addtitle>Hum Genet</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>138</volume><issue>5</issue><spage>483</spage><epage>489</epage><pages>483-489</pages><issn>0340-6717</issn><eissn>1432-1203</eissn><abstract>Therapies for Duchenne muscular dystrophy (DMD) must first be tested in animal models to determine proof-of-concept, efficacy, and importantly, safety. The murine and canine models for DMD are genetically homologous and most commonly used in pre-clinical testing. Although the mouse is a strong, proof-of-concept model, affected dogs show more analogous clinical and immunological disease progression compared to boys with DMD. As such, evaluating genetic therapies in the canine models may better predict response at the genetic, phenotypic, and immunological levels. We review the use of canine models for DMD and their benefits as it pertains to genetic therapy studies, including gene replacement, exon skipping, and gene editing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30734120</pmid><doi>10.1007/s00439-019-01976-z</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8796-8123</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0340-6717
ispartof Human genetics, 2019-05, Vol.138 (5), p.483-489
issn 0340-6717
1432-1203
language eng
recordid cdi_proquest_miscellaneous_2184135996
source Springer Online Journals - JUSTICE
subjects Animal models
Biomedical and Life Sciences
Biomedicine
Canine Genetics
Dogs
Duchenne muscular dystrophy
Duchenne's muscular dystrophy
Exon skipping
Gene Function
Gene therapy
Genes
Genome editing
Human Genetics
Immunological diseases
Immunology
Metabolic Diseases
Molecular Medicine
Muscular dystrophy
Retirement benefits
Review
title Gene therapies in canine models for Duchenne muscular dystrophy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20therapies%20in%20canine%20models%20for%20Duchenne%20muscular%20dystrophy&rft.jtitle=Human%20genetics&rft.au=Nghiem,%20Peter%20P.&rft.date=2019-05-01&rft.volume=138&rft.issue=5&rft.spage=483&rft.epage=489&rft.pages=483-489&rft.issn=0340-6717&rft.eissn=1432-1203&rft_id=info:doi/10.1007/s00439-019-01976-z&rft_dat=%3Cgale_proqu%3EA586931378%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177017098&rft_id=info:pmid/30734120&rft_galeid=A586931378&rfr_iscdi=true