Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer

Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer discovery 2019-05, Vol.9 (5), p.646-661
Hauptverfasser: Sen, Triparna, Rodriguez, B Leticia, Chen, Limo, Corte, Carminia M Della, Morikawa, Naoto, Fujimoto, Junya, Cristea, Sandra, Nguyen, Thuyen, Diao, Lixia, Li, Lerong, Fan, Youhong, Yang, Yongbin, Wang, Jing, Glisson, Bonnie S, Wistuba, Ignacio I, Sage, Julien, Heymach, John V, Gibbons, Don L, Byers, Lauren A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 661
container_issue 5
container_start_page 646
container_title Cancer discovery
container_volume 9
creator Sen, Triparna
Rodriguez, B Leticia
Chen, Limo
Corte, Carminia M Della
Morikawa, Naoto
Fujimoto, Junya
Cristea, Sandra
Nguyen, Thuyen
Diao, Lixia
Li, Lerong
Fan, Youhong
Yang, Yongbin
Wang, Jing
Glisson, Bonnie S
Wistuba, Ignacio I
Sage, Julien
Heymach, John V
Gibbons, Don L
Byers, Lauren A
description Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC models. CD8 T-cell depletion reversed the antitumor effect, demonstrating the role of CD8 T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of and successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC. . .
doi_str_mv 10.1158/2159-8290.CD-18-1020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2183651469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183651469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-f0688999992f7e5f4f77e4871a17030406686263636825b9b19f5f946bbd66f03</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEAgT8A4Ry5NKRtPnqcepgTBofgnKO0i4ZQUszkhRpEj-eVsDsgy3br209AFxiNMGYipsc0zITeYkm1SzDIsMoRwfgdF8-3OecnICLGD_QYKQkFPFjcFIgzrng6BR81yqsdbLdGs4ep3CmnFpr-KLj1ndRw-fgnU86wmmXbOqdD3DhXN_ZtIPpPfh-_Q5f68XjPHvQK6uSXsE6a_VmA6dtsl8qWd9B28FXp4ZaNTaW_XCrUl2rwzk4MmoT9cVfPANvd7d1dZ8tn-aLarrMWkJpygxiQpSj5YZraojhXBPBscIcFYggxgTLWTG4yGlTNrg01JSENc2KMYOKM3D9u3cb_GevY5LOxvFL1WnfR5ljUTCKCSuHUfI72gYfY9BGboN1KuwkRnJEL0eucmQsq5nEQo7oB9nV34W-cXq1F_2DLn4AvCh9aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183651469</pqid></control><display><type>article</type><title>Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer</title><source>MEDLINE</source><source>EZB Electronic Journals Library</source><source>Highwire Press American Association for Cancer Research - AACR Journals</source><creator>Sen, Triparna ; Rodriguez, B Leticia ; Chen, Limo ; Corte, Carminia M Della ; Morikawa, Naoto ; Fujimoto, Junya ; Cristea, Sandra ; Nguyen, Thuyen ; Diao, Lixia ; Li, Lerong ; Fan, Youhong ; Yang, Yongbin ; Wang, Jing ; Glisson, Bonnie S ; Wistuba, Ignacio I ; Sage, Julien ; Heymach, John V ; Gibbons, Don L ; Byers, Lauren A</creator><creatorcontrib>Sen, Triparna ; Rodriguez, B Leticia ; Chen, Limo ; Corte, Carminia M Della ; Morikawa, Naoto ; Fujimoto, Junya ; Cristea, Sandra ; Nguyen, Thuyen ; Diao, Lixia ; Li, Lerong ; Fan, Youhong ; Yang, Yongbin ; Wang, Jing ; Glisson, Bonnie S ; Wistuba, Ignacio I ; Sage, Julien ; Heymach, John V ; Gibbons, Don L ; Byers, Lauren A</creatorcontrib><description>Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC models. CD8 T-cell depletion reversed the antitumor effect, demonstrating the role of CD8 T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of and successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC. . .</description><identifier>ISSN: 2159-8274</identifier><identifier>ISSN: 2159-8290</identifier><identifier>EISSN: 2159-8290</identifier><identifier>DOI: 10.1158/2159-8290.CD-18-1020</identifier><identifier>PMID: 30777870</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Apoptosis - drug effects ; B7-H1 Antigen - antagonists &amp; inhibitors ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell Proliferation - drug effects ; DNA Damage ; Female ; Humans ; Interferon Regulatory Factor-3 - genetics ; Interferon Regulatory Factor-3 - metabolism ; Lung Neoplasms - drug therapy ; Lung Neoplasms - genetics ; Lung Neoplasms - immunology ; Lung Neoplasms - pathology ; Lymphocyte Activation - drug effects ; Membrane Proteins - genetics ; Membrane Proteins - immunology ; Membrane Proteins - metabolism ; Mice ; Mice, Nude ; Phthalazines - pharmacology ; Piperazines - pharmacology ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Protein Kinase Inhibitors - pharmacology ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Pyrazines - pharmacology ; Pyrazoles - pharmacology ; Random Allocation ; Small Cell Lung Carcinoma - drug therapy ; Small Cell Lung Carcinoma - genetics ; Small Cell Lung Carcinoma - immunology ; Small Cell Lung Carcinoma - pathology ; T-Lymphocytes, Cytotoxic - drug effects ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Cytotoxic - metabolism ; Tumor Cells, Cultured ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer discovery, 2019-05, Vol.9 (5), p.646-661</ispartof><rights>2019 American Association for Cancer Research.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-f0688999992f7e5f4f77e4871a17030406686263636825b9b19f5f946bbd66f03</citedby><cites>FETCH-LOGICAL-c455t-f0688999992f7e5f4f77e4871a17030406686263636825b9b19f5f946bbd66f03</cites><orcidid>0000-0002-8928-9968 ; 0000-0001-9068-8942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30777870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sen, Triparna</creatorcontrib><creatorcontrib>Rodriguez, B Leticia</creatorcontrib><creatorcontrib>Chen, Limo</creatorcontrib><creatorcontrib>Corte, Carminia M Della</creatorcontrib><creatorcontrib>Morikawa, Naoto</creatorcontrib><creatorcontrib>Fujimoto, Junya</creatorcontrib><creatorcontrib>Cristea, Sandra</creatorcontrib><creatorcontrib>Nguyen, Thuyen</creatorcontrib><creatorcontrib>Diao, Lixia</creatorcontrib><creatorcontrib>Li, Lerong</creatorcontrib><creatorcontrib>Fan, Youhong</creatorcontrib><creatorcontrib>Yang, Yongbin</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Glisson, Bonnie S</creatorcontrib><creatorcontrib>Wistuba, Ignacio I</creatorcontrib><creatorcontrib>Sage, Julien</creatorcontrib><creatorcontrib>Heymach, John V</creatorcontrib><creatorcontrib>Gibbons, Don L</creatorcontrib><creatorcontrib>Byers, Lauren A</creatorcontrib><title>Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer</title><title>Cancer discovery</title><addtitle>Cancer Discov</addtitle><description>Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC models. CD8 T-cell depletion reversed the antitumor effect, demonstrating the role of CD8 T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of and successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC. . .</description><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>B7-H1 Antigen - antagonists &amp; inhibitors</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell Proliferation - drug effects</subject><subject>DNA Damage</subject><subject>Female</subject><subject>Humans</subject><subject>Interferon Regulatory Factor-3 - genetics</subject><subject>Interferon Regulatory Factor-3 - metabolism</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - immunology</subject><subject>Lung Neoplasms - pathology</subject><subject>Lymphocyte Activation - drug effects</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - immunology</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Phthalazines - pharmacology</subject><subject>Piperazines - pharmacology</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Pyrazines - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Random Allocation</subject><subject>Small Cell Lung Carcinoma - drug therapy</subject><subject>Small Cell Lung Carcinoma - genetics</subject><subject>Small Cell Lung Carcinoma - immunology</subject><subject>Small Cell Lung Carcinoma - pathology</subject><subject>T-Lymphocytes, Cytotoxic - drug effects</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Cytotoxic - metabolism</subject><subject>Tumor Cells, Cultured</subject><subject>Xenograft Model Antitumor Assays</subject><issn>2159-8274</issn><issn>2159-8290</issn><issn>2159-8290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PwzAMhiMEAgT8A4Ry5NKRtPnqcepgTBofgnKO0i4ZQUszkhRpEj-eVsDsgy3br209AFxiNMGYipsc0zITeYkm1SzDIsMoRwfgdF8-3OecnICLGD_QYKQkFPFjcFIgzrng6BR81yqsdbLdGs4ep3CmnFpr-KLj1ndRw-fgnU86wmmXbOqdD3DhXN_ZtIPpPfh-_Q5f68XjPHvQK6uSXsE6a_VmA6dtsl8qWd9B28FXp4ZaNTaW_XCrUl2rwzk4MmoT9cVfPANvd7d1dZ8tn-aLarrMWkJpygxiQpSj5YZraojhXBPBscIcFYggxgTLWTG4yGlTNrg01JSENc2KMYOKM3D9u3cb_GevY5LOxvFL1WnfR5ljUTCKCSuHUfI72gYfY9BGboN1KuwkRnJEL0eucmQsq5nEQo7oB9nV34W-cXq1F_2DLn4AvCh9aw</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Sen, Triparna</creator><creator>Rodriguez, B Leticia</creator><creator>Chen, Limo</creator><creator>Corte, Carminia M Della</creator><creator>Morikawa, Naoto</creator><creator>Fujimoto, Junya</creator><creator>Cristea, Sandra</creator><creator>Nguyen, Thuyen</creator><creator>Diao, Lixia</creator><creator>Li, Lerong</creator><creator>Fan, Youhong</creator><creator>Yang, Yongbin</creator><creator>Wang, Jing</creator><creator>Glisson, Bonnie S</creator><creator>Wistuba, Ignacio I</creator><creator>Sage, Julien</creator><creator>Heymach, John V</creator><creator>Gibbons, Don L</creator><creator>Byers, Lauren A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8928-9968</orcidid><orcidid>https://orcid.org/0000-0001-9068-8942</orcidid></search><sort><creationdate>201905</creationdate><title>Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer</title><author>Sen, Triparna ; Rodriguez, B Leticia ; Chen, Limo ; Corte, Carminia M Della ; Morikawa, Naoto ; Fujimoto, Junya ; Cristea, Sandra ; Nguyen, Thuyen ; Diao, Lixia ; Li, Lerong ; Fan, Youhong ; Yang, Yongbin ; Wang, Jing ; Glisson, Bonnie S ; Wistuba, Ignacio I ; Sage, Julien ; Heymach, John V ; Gibbons, Don L ; Byers, Lauren A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-f0688999992f7e5f4f77e4871a17030406686263636825b9b19f5f946bbd66f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>B7-H1 Antigen - antagonists &amp; inhibitors</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell Proliferation - drug effects</topic><topic>DNA Damage</topic><topic>Female</topic><topic>Humans</topic><topic>Interferon Regulatory Factor-3 - genetics</topic><topic>Interferon Regulatory Factor-3 - metabolism</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - immunology</topic><topic>Lung Neoplasms - pathology</topic><topic>Lymphocyte Activation - drug effects</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - immunology</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Phthalazines - pharmacology</topic><topic>Piperazines - pharmacology</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Pyrazines - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Random Allocation</topic><topic>Small Cell Lung Carcinoma - drug therapy</topic><topic>Small Cell Lung Carcinoma - genetics</topic><topic>Small Cell Lung Carcinoma - immunology</topic><topic>Small Cell Lung Carcinoma - pathology</topic><topic>T-Lymphocytes, Cytotoxic - drug effects</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Cytotoxic - metabolism</topic><topic>Tumor Cells, Cultured</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>online_resources</toplevel><creatorcontrib>Sen, Triparna</creatorcontrib><creatorcontrib>Rodriguez, B Leticia</creatorcontrib><creatorcontrib>Chen, Limo</creatorcontrib><creatorcontrib>Corte, Carminia M Della</creatorcontrib><creatorcontrib>Morikawa, Naoto</creatorcontrib><creatorcontrib>Fujimoto, Junya</creatorcontrib><creatorcontrib>Cristea, Sandra</creatorcontrib><creatorcontrib>Nguyen, Thuyen</creatorcontrib><creatorcontrib>Diao, Lixia</creatorcontrib><creatorcontrib>Li, Lerong</creatorcontrib><creatorcontrib>Fan, Youhong</creatorcontrib><creatorcontrib>Yang, Yongbin</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Glisson, Bonnie S</creatorcontrib><creatorcontrib>Wistuba, Ignacio I</creatorcontrib><creatorcontrib>Sage, Julien</creatorcontrib><creatorcontrib>Heymach, John V</creatorcontrib><creatorcontrib>Gibbons, Don L</creatorcontrib><creatorcontrib>Byers, Lauren A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Triparna</au><au>Rodriguez, B Leticia</au><au>Chen, Limo</au><au>Corte, Carminia M Della</au><au>Morikawa, Naoto</au><au>Fujimoto, Junya</au><au>Cristea, Sandra</au><au>Nguyen, Thuyen</au><au>Diao, Lixia</au><au>Li, Lerong</au><au>Fan, Youhong</au><au>Yang, Yongbin</au><au>Wang, Jing</au><au>Glisson, Bonnie S</au><au>Wistuba, Ignacio I</au><au>Sage, Julien</au><au>Heymach, John V</au><au>Gibbons, Don L</au><au>Byers, Lauren A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer</atitle><jtitle>Cancer discovery</jtitle><addtitle>Cancer Discov</addtitle><date>2019-05</date><risdate>2019</risdate><volume>9</volume><issue>5</issue><spage>646</spage><epage>661</epage><pages>646-661</pages><issn>2159-8274</issn><issn>2159-8290</issn><eissn>2159-8290</eissn><abstract>Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC models. CD8 T-cell depletion reversed the antitumor effect, demonstrating the role of CD8 T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of and successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC. . .</abstract><cop>United States</cop><pmid>30777870</pmid><doi>10.1158/2159-8290.CD-18-1020</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8928-9968</orcidid><orcidid>https://orcid.org/0000-0001-9068-8942</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2159-8274
ispartof Cancer discovery, 2019-05, Vol.9 (5), p.646-661
issn 2159-8274
2159-8290
2159-8290
language eng
recordid cdi_proquest_miscellaneous_2183651469
source MEDLINE; EZB Electronic Journals Library; Highwire Press American Association for Cancer Research - AACR Journals
subjects Animals
Apoptosis - drug effects
B7-H1 Antigen - antagonists & inhibitors
CD8-Positive T-Lymphocytes - drug effects
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell Proliferation - drug effects
DNA Damage
Female
Humans
Interferon Regulatory Factor-3 - genetics
Interferon Regulatory Factor-3 - metabolism
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
Lung Neoplasms - immunology
Lung Neoplasms - pathology
Lymphocyte Activation - drug effects
Membrane Proteins - genetics
Membrane Proteins - immunology
Membrane Proteins - metabolism
Mice
Mice, Nude
Phthalazines - pharmacology
Piperazines - pharmacology
Poly(ADP-ribose) Polymerase Inhibitors - pharmacology
Protein Kinase Inhibitors - pharmacology
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Pyrazines - pharmacology
Pyrazoles - pharmacology
Random Allocation
Small Cell Lung Carcinoma - drug therapy
Small Cell Lung Carcinoma - genetics
Small Cell Lung Carcinoma - immunology
Small Cell Lung Carcinoma - pathology
T-Lymphocytes, Cytotoxic - drug effects
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Cytotoxic - metabolism
Tumor Cells, Cultured
Xenograft Model Antitumor Assays
title Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20DNA%20Damage%20Response%20Promotes%20Antitumor%20Immunity%20through%20STING-Mediated%20T-cell%20Activation%20in%20Small%20Cell%20Lung%20Cancer&rft.jtitle=Cancer%20discovery&rft.au=Sen,%20Triparna&rft.date=2019-05&rft.volume=9&rft.issue=5&rft.spage=646&rft.epage=661&rft.pages=646-661&rft.issn=2159-8274&rft.eissn=2159-8290&rft_id=info:doi/10.1158/2159-8290.CD-18-1020&rft_dat=%3Cproquest_cross%3E2183651469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183651469&rft_id=info:pmid/30777870&rfr_iscdi=true