Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer
Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and...
Gespeichert in:
Veröffentlicht in: | Cancer discovery 2019-05, Vol.9 (5), p.646-661 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 661 |
---|---|
container_issue | 5 |
container_start_page | 646 |
container_title | Cancer discovery |
container_volume | 9 |
creator | Sen, Triparna Rodriguez, B Leticia Chen, Limo Corte, Carminia M Della Morikawa, Naoto Fujimoto, Junya Cristea, Sandra Nguyen, Thuyen Diao, Lixia Li, Lerong Fan, Youhong Yang, Yongbin Wang, Jing Glisson, Bonnie S Wistuba, Ignacio I Sage, Julien Heymach, John V Gibbons, Don L Byers, Lauren A |
description | Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC
models. CD8
T-cell depletion reversed the antitumor effect, demonstrating the role of CD8
T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of
and
successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC.
.
. |
doi_str_mv | 10.1158/2159-8290.CD-18-1020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2183651469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183651469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-f0688999992f7e5f4f77e4871a17030406686263636825b9b19f5f946bbd66f03</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEAgT8A4Ry5NKRtPnqcepgTBofgnKO0i4ZQUszkhRpEj-eVsDsgy3br209AFxiNMGYipsc0zITeYkm1SzDIsMoRwfgdF8-3OecnICLGD_QYKQkFPFjcFIgzrng6BR81yqsdbLdGs4ep3CmnFpr-KLj1ndRw-fgnU86wmmXbOqdD3DhXN_ZtIPpPfh-_Q5f68XjPHvQK6uSXsE6a_VmA6dtsl8qWd9B28FXp4ZaNTaW_XCrUl2rwzk4MmoT9cVfPANvd7d1dZ8tn-aLarrMWkJpygxiQpSj5YZraojhXBPBscIcFYggxgTLWTG4yGlTNrg01JSENc2KMYOKM3D9u3cb_GevY5LOxvFL1WnfR5ljUTCKCSuHUfI72gYfY9BGboN1KuwkRnJEL0eucmQsq5nEQo7oB9nV34W-cXq1F_2DLn4AvCh9aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183651469</pqid></control><display><type>article</type><title>Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer</title><source>MEDLINE</source><source>EZB Electronic Journals Library</source><source>Highwire Press American Association for Cancer Research - AACR Journals</source><creator>Sen, Triparna ; Rodriguez, B Leticia ; Chen, Limo ; Corte, Carminia M Della ; Morikawa, Naoto ; Fujimoto, Junya ; Cristea, Sandra ; Nguyen, Thuyen ; Diao, Lixia ; Li, Lerong ; Fan, Youhong ; Yang, Yongbin ; Wang, Jing ; Glisson, Bonnie S ; Wistuba, Ignacio I ; Sage, Julien ; Heymach, John V ; Gibbons, Don L ; Byers, Lauren A</creator><creatorcontrib>Sen, Triparna ; Rodriguez, B Leticia ; Chen, Limo ; Corte, Carminia M Della ; Morikawa, Naoto ; Fujimoto, Junya ; Cristea, Sandra ; Nguyen, Thuyen ; Diao, Lixia ; Li, Lerong ; Fan, Youhong ; Yang, Yongbin ; Wang, Jing ; Glisson, Bonnie S ; Wistuba, Ignacio I ; Sage, Julien ; Heymach, John V ; Gibbons, Don L ; Byers, Lauren A</creatorcontrib><description>Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC
models. CD8
T-cell depletion reversed the antitumor effect, demonstrating the role of CD8
T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of
and
successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC.
.
.</description><identifier>ISSN: 2159-8274</identifier><identifier>ISSN: 2159-8290</identifier><identifier>EISSN: 2159-8290</identifier><identifier>DOI: 10.1158/2159-8290.CD-18-1020</identifier><identifier>PMID: 30777870</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Apoptosis - drug effects ; B7-H1 Antigen - antagonists & inhibitors ; CD8-Positive T-Lymphocytes - drug effects ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - metabolism ; Cell Proliferation - drug effects ; DNA Damage ; Female ; Humans ; Interferon Regulatory Factor-3 - genetics ; Interferon Regulatory Factor-3 - metabolism ; Lung Neoplasms - drug therapy ; Lung Neoplasms - genetics ; Lung Neoplasms - immunology ; Lung Neoplasms - pathology ; Lymphocyte Activation - drug effects ; Membrane Proteins - genetics ; Membrane Proteins - immunology ; Membrane Proteins - metabolism ; Mice ; Mice, Nude ; Phthalazines - pharmacology ; Piperazines - pharmacology ; Poly(ADP-ribose) Polymerase Inhibitors - pharmacology ; Protein Kinase Inhibitors - pharmacology ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Pyrazines - pharmacology ; Pyrazoles - pharmacology ; Random Allocation ; Small Cell Lung Carcinoma - drug therapy ; Small Cell Lung Carcinoma - genetics ; Small Cell Lung Carcinoma - immunology ; Small Cell Lung Carcinoma - pathology ; T-Lymphocytes, Cytotoxic - drug effects ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Cytotoxic - metabolism ; Tumor Cells, Cultured ; Xenograft Model Antitumor Assays</subject><ispartof>Cancer discovery, 2019-05, Vol.9 (5), p.646-661</ispartof><rights>2019 American Association for Cancer Research.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-f0688999992f7e5f4f77e4871a17030406686263636825b9b19f5f946bbd66f03</citedby><cites>FETCH-LOGICAL-c455t-f0688999992f7e5f4f77e4871a17030406686263636825b9b19f5f946bbd66f03</cites><orcidid>0000-0002-8928-9968 ; 0000-0001-9068-8942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30777870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sen, Triparna</creatorcontrib><creatorcontrib>Rodriguez, B Leticia</creatorcontrib><creatorcontrib>Chen, Limo</creatorcontrib><creatorcontrib>Corte, Carminia M Della</creatorcontrib><creatorcontrib>Morikawa, Naoto</creatorcontrib><creatorcontrib>Fujimoto, Junya</creatorcontrib><creatorcontrib>Cristea, Sandra</creatorcontrib><creatorcontrib>Nguyen, Thuyen</creatorcontrib><creatorcontrib>Diao, Lixia</creatorcontrib><creatorcontrib>Li, Lerong</creatorcontrib><creatorcontrib>Fan, Youhong</creatorcontrib><creatorcontrib>Yang, Yongbin</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Glisson, Bonnie S</creatorcontrib><creatorcontrib>Wistuba, Ignacio I</creatorcontrib><creatorcontrib>Sage, Julien</creatorcontrib><creatorcontrib>Heymach, John V</creatorcontrib><creatorcontrib>Gibbons, Don L</creatorcontrib><creatorcontrib>Byers, Lauren A</creatorcontrib><title>Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer</title><title>Cancer discovery</title><addtitle>Cancer Discov</addtitle><description>Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC
models. CD8
T-cell depletion reversed the antitumor effect, demonstrating the role of CD8
T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of
and
successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC.
.
.</description><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>B7-H1 Antigen - antagonists & inhibitors</subject><subject>CD8-Positive T-Lymphocytes - drug effects</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - metabolism</subject><subject>Cell Proliferation - drug effects</subject><subject>DNA Damage</subject><subject>Female</subject><subject>Humans</subject><subject>Interferon Regulatory Factor-3 - genetics</subject><subject>Interferon Regulatory Factor-3 - metabolism</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - immunology</subject><subject>Lung Neoplasms - pathology</subject><subject>Lymphocyte Activation - drug effects</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - immunology</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Phthalazines - pharmacology</subject><subject>Piperazines - pharmacology</subject><subject>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Pyrazines - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Random Allocation</subject><subject>Small Cell Lung Carcinoma - drug therapy</subject><subject>Small Cell Lung Carcinoma - genetics</subject><subject>Small Cell Lung Carcinoma - immunology</subject><subject>Small Cell Lung Carcinoma - pathology</subject><subject>T-Lymphocytes, Cytotoxic - drug effects</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Cytotoxic - metabolism</subject><subject>Tumor Cells, Cultured</subject><subject>Xenograft Model Antitumor Assays</subject><issn>2159-8274</issn><issn>2159-8290</issn><issn>2159-8290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PwzAMhiMEAgT8A4Ry5NKRtPnqcepgTBofgnKO0i4ZQUszkhRpEj-eVsDsgy3br209AFxiNMGYipsc0zITeYkm1SzDIsMoRwfgdF8-3OecnICLGD_QYKQkFPFjcFIgzrng6BR81yqsdbLdGs4ep3CmnFpr-KLj1ndRw-fgnU86wmmXbOqdD3DhXN_ZtIPpPfh-_Q5f68XjPHvQK6uSXsE6a_VmA6dtsl8qWd9B28FXp4ZaNTaW_XCrUl2rwzk4MmoT9cVfPANvd7d1dZ8tn-aLarrMWkJpygxiQpSj5YZraojhXBPBscIcFYggxgTLWTG4yGlTNrg01JSENc2KMYOKM3D9u3cb_GevY5LOxvFL1WnfR5ljUTCKCSuHUfI72gYfY9BGboN1KuwkRnJEL0eucmQsq5nEQo7oB9nV34W-cXq1F_2DLn4AvCh9aw</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Sen, Triparna</creator><creator>Rodriguez, B Leticia</creator><creator>Chen, Limo</creator><creator>Corte, Carminia M Della</creator><creator>Morikawa, Naoto</creator><creator>Fujimoto, Junya</creator><creator>Cristea, Sandra</creator><creator>Nguyen, Thuyen</creator><creator>Diao, Lixia</creator><creator>Li, Lerong</creator><creator>Fan, Youhong</creator><creator>Yang, Yongbin</creator><creator>Wang, Jing</creator><creator>Glisson, Bonnie S</creator><creator>Wistuba, Ignacio I</creator><creator>Sage, Julien</creator><creator>Heymach, John V</creator><creator>Gibbons, Don L</creator><creator>Byers, Lauren A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8928-9968</orcidid><orcidid>https://orcid.org/0000-0001-9068-8942</orcidid></search><sort><creationdate>201905</creationdate><title>Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer</title><author>Sen, Triparna ; Rodriguez, B Leticia ; Chen, Limo ; Corte, Carminia M Della ; Morikawa, Naoto ; Fujimoto, Junya ; Cristea, Sandra ; Nguyen, Thuyen ; Diao, Lixia ; Li, Lerong ; Fan, Youhong ; Yang, Yongbin ; Wang, Jing ; Glisson, Bonnie S ; Wistuba, Ignacio I ; Sage, Julien ; Heymach, John V ; Gibbons, Don L ; Byers, Lauren A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-f0688999992f7e5f4f77e4871a17030406686263636825b9b19f5f946bbd66f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>B7-H1 Antigen - antagonists & inhibitors</topic><topic>CD8-Positive T-Lymphocytes - drug effects</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - metabolism</topic><topic>Cell Proliferation - drug effects</topic><topic>DNA Damage</topic><topic>Female</topic><topic>Humans</topic><topic>Interferon Regulatory Factor-3 - genetics</topic><topic>Interferon Regulatory Factor-3 - metabolism</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - immunology</topic><topic>Lung Neoplasms - pathology</topic><topic>Lymphocyte Activation - drug effects</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - immunology</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Phthalazines - pharmacology</topic><topic>Piperazines - pharmacology</topic><topic>Poly(ADP-ribose) Polymerase Inhibitors - pharmacology</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Pyrazines - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Random Allocation</topic><topic>Small Cell Lung Carcinoma - drug therapy</topic><topic>Small Cell Lung Carcinoma - genetics</topic><topic>Small Cell Lung Carcinoma - immunology</topic><topic>Small Cell Lung Carcinoma - pathology</topic><topic>T-Lymphocytes, Cytotoxic - drug effects</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Cytotoxic - metabolism</topic><topic>Tumor Cells, Cultured</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>online_resources</toplevel><creatorcontrib>Sen, Triparna</creatorcontrib><creatorcontrib>Rodriguez, B Leticia</creatorcontrib><creatorcontrib>Chen, Limo</creatorcontrib><creatorcontrib>Corte, Carminia M Della</creatorcontrib><creatorcontrib>Morikawa, Naoto</creatorcontrib><creatorcontrib>Fujimoto, Junya</creatorcontrib><creatorcontrib>Cristea, Sandra</creatorcontrib><creatorcontrib>Nguyen, Thuyen</creatorcontrib><creatorcontrib>Diao, Lixia</creatorcontrib><creatorcontrib>Li, Lerong</creatorcontrib><creatorcontrib>Fan, Youhong</creatorcontrib><creatorcontrib>Yang, Yongbin</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Glisson, Bonnie S</creatorcontrib><creatorcontrib>Wistuba, Ignacio I</creatorcontrib><creatorcontrib>Sage, Julien</creatorcontrib><creatorcontrib>Heymach, John V</creatorcontrib><creatorcontrib>Gibbons, Don L</creatorcontrib><creatorcontrib>Byers, Lauren A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Triparna</au><au>Rodriguez, B Leticia</au><au>Chen, Limo</au><au>Corte, Carminia M Della</au><au>Morikawa, Naoto</au><au>Fujimoto, Junya</au><au>Cristea, Sandra</au><au>Nguyen, Thuyen</au><au>Diao, Lixia</au><au>Li, Lerong</au><au>Fan, Youhong</au><au>Yang, Yongbin</au><au>Wang, Jing</au><au>Glisson, Bonnie S</au><au>Wistuba, Ignacio I</au><au>Sage, Julien</au><au>Heymach, John V</au><au>Gibbons, Don L</au><au>Byers, Lauren A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer</atitle><jtitle>Cancer discovery</jtitle><addtitle>Cancer Discov</addtitle><date>2019-05</date><risdate>2019</risdate><volume>9</volume><issue>5</issue><spage>646</spage><epage>661</epage><pages>646-661</pages><issn>2159-8274</issn><issn>2159-8290</issn><eissn>2159-8290</eissn><abstract>Despite recent advances in the use of immunotherapy, only a minority of patients with small cell lung cancer (SCLC) respond to immune checkpoint blockade (ICB). Here, we show that targeting the DNA damage response (DDR) proteins PARP and checkpoint kinase 1 (CHK1) significantly increased protein and surface expression of PD-L1. PARP or CHK1 inhibition remarkably potentiated the antitumor effect of PD-L1 blockade and augmented cytotoxic T-cell infiltration in multiple immunocompetent SCLC
models. CD8
T-cell depletion reversed the antitumor effect, demonstrating the role of CD8
T cells in combined DDR-PD-L1 blockade in SCLC. We further demonstrate that DDR inhibition activated the STING/TBK1/IRF3 innate immune pathway, leading to increased levels of chemokines such as CXCL10 and CCL5 that induced activation and function of cytotoxic T lymphocytes. Knockdown of
and
successfully reversed the antitumor effect of combined inhibition of DDR and PD-L1. Our results define previously unrecognized innate immune pathway-mediated immunomodulatory functions of DDR proteins and provide a rationale for combining PARP/CHK1 inhibitors and immunotherapies in SCLC. SIGNIFICANCE: Our results define previously unrecognized immunomodulatory functions of DDR inhibitors and suggest that adding PARP or CHK1 inhibitors to ICB may enhance treatment efficacy in patients with SCLC. Furthermore, our study supports a role of innate immune STING pathway in DDR-mediated antitumor immunity in SCLC.
.
.</abstract><cop>United States</cop><pmid>30777870</pmid><doi>10.1158/2159-8290.CD-18-1020</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8928-9968</orcidid><orcidid>https://orcid.org/0000-0001-9068-8942</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-8274 |
ispartof | Cancer discovery, 2019-05, Vol.9 (5), p.646-661 |
issn | 2159-8274 2159-8290 2159-8290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2183651469 |
source | MEDLINE; EZB Electronic Journals Library; Highwire Press American Association for Cancer Research - AACR Journals |
subjects | Animals Apoptosis - drug effects B7-H1 Antigen - antagonists & inhibitors CD8-Positive T-Lymphocytes - drug effects CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell Proliferation - drug effects DNA Damage Female Humans Interferon Regulatory Factor-3 - genetics Interferon Regulatory Factor-3 - metabolism Lung Neoplasms - drug therapy Lung Neoplasms - genetics Lung Neoplasms - immunology Lung Neoplasms - pathology Lymphocyte Activation - drug effects Membrane Proteins - genetics Membrane Proteins - immunology Membrane Proteins - metabolism Mice Mice, Nude Phthalazines - pharmacology Piperazines - pharmacology Poly(ADP-ribose) Polymerase Inhibitors - pharmacology Protein Kinase Inhibitors - pharmacology Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Pyrazines - pharmacology Pyrazoles - pharmacology Random Allocation Small Cell Lung Carcinoma - drug therapy Small Cell Lung Carcinoma - genetics Small Cell Lung Carcinoma - immunology Small Cell Lung Carcinoma - pathology T-Lymphocytes, Cytotoxic - drug effects T-Lymphocytes, Cytotoxic - immunology T-Lymphocytes, Cytotoxic - metabolism Tumor Cells, Cultured Xenograft Model Antitumor Assays |
title | Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20DNA%20Damage%20Response%20Promotes%20Antitumor%20Immunity%20through%20STING-Mediated%20T-cell%20Activation%20in%20Small%20Cell%20Lung%20Cancer&rft.jtitle=Cancer%20discovery&rft.au=Sen,%20Triparna&rft.date=2019-05&rft.volume=9&rft.issue=5&rft.spage=646&rft.epage=661&rft.pages=646-661&rft.issn=2159-8274&rft.eissn=2159-8290&rft_id=info:doi/10.1158/2159-8290.CD-18-1020&rft_dat=%3Cproquest_cross%3E2183651469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183651469&rft_id=info:pmid/30777870&rfr_iscdi=true |