Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries

Nanodot BaTiO3 supported LiCoO2 cathode thin films can dramatically improve high-rate chargeability and cyclability. The prepared BaTiO3 nanodot is

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-03, Vol.19 (3), p.1688-1694
Hauptverfasser: Yasuhara, Sou, Yasui, Shintaro, Teranishi, Takashi, Chajima, Keisuke, Yoshikawa, Yumi, Majima, Yutaka, Taniyama, Tomoyasu, Itoh, Mitsuru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1694
container_issue 3
container_start_page 1688
container_title Nano letters
container_volume 19
creator Yasuhara, Sou
Yasui, Shintaro
Teranishi, Takashi
Chajima, Keisuke
Yoshikawa, Yumi
Majima, Yutaka
Taniyama, Tomoyasu
Itoh, Mitsuru
description Nanodot BaTiO3 supported LiCoO2 cathode thin films can dramatically improve high-rate chargeability and cyclability. The prepared BaTiO3 nanodot is
doi_str_mv 10.1021/acs.nanolett.8b04690
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2183647176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183647176</sourcerecordid><originalsourceid>FETCH-LOGICAL-a264t-f4b0363e66cd410f3a64a91ab1b966c93a3b98ca010ef40b0442e1937f6cd60e3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSsEEmPwDzjkyKXDabKsOUI1YNLEJNSdK7dz10xdAk122L8n0wYnW0_Pz_aXJI8cJhwy_oyNn1i0rqcQJnkNUmm4SkZ8KiBVWmfX_30ub5M773cAoMUURslxbju0De3JBuZatu7DgJ3ZduwLA7Giw2FLWJvehCOrj2xhAw0tNgZ79hlXblxgr1ialWDlQBjOOZYtTeFWGSswdG5DrOyMZW-m30dziAmG_H1y02Lv6eFSx8n6bV4WH-ly9b4oXpYpZkqGtJU1CCVIqWYjObQClUTNsea1jpoWKGqdNwgcqJUQn5cZcS1mbRxQQGKcPJ1zvwf3cyAfqr3xDfU9WnIHX2U8F0rO-ExFK5ytEWi1c4fBxsMqDtWJcnUS_yhXF8riF3e7dDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183647176</pqid></control><display><type>article</type><title>Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries</title><source>ACS Publications</source><creator>Yasuhara, Sou ; Yasui, Shintaro ; Teranishi, Takashi ; Chajima, Keisuke ; Yoshikawa, Yumi ; Majima, Yutaka ; Taniyama, Tomoyasu ; Itoh, Mitsuru</creator><creatorcontrib>Yasuhara, Sou ; Yasui, Shintaro ; Teranishi, Takashi ; Chajima, Keisuke ; Yoshikawa, Yumi ; Majima, Yutaka ; Taniyama, Tomoyasu ; Itoh, Mitsuru</creatorcontrib><description>Nanodot BaTiO3 supported LiCoO2 cathode thin films can dramatically improve high-rate chargeability and cyclability. The prepared BaTiO3 nanodot is &lt;3 nm in height and 35 nm in diameter, and its coverage is &lt;5%. Supported by high dielectric constant materials on the surface of cathode materials, Li ion (Li+) can intercalate through robust Li paths around the triple-phase interface consisting of the dielectric, cathode, and electrolyte. The current concentration around the triple-phase interface is observed by the finite element method and is in good agreement with the experimental data. The interfacial resistance between the cathode and electrolyte with nanodot BaTiO3 is smaller than that without nanodot BaTiO3. The decomposition of the organic solvent electrolyte can prevent the fabrication of a solid electrolyte interface around the triple-phase interface. Li+ paths may be created at non solid electrolyte interface covered regions by the strong current concentration originating from high dielectric constant materials on the cathode. Robust Li+ paths lead to excellent chargeability and cyclability.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b04690</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2019-03, Vol.19 (3), p.1688-1694</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0524-9318 ; 0000-0001-6457-9152 ; 0000-0002-5108-1934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.8b04690$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b04690$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yasuhara, Sou</creatorcontrib><creatorcontrib>Yasui, Shintaro</creatorcontrib><creatorcontrib>Teranishi, Takashi</creatorcontrib><creatorcontrib>Chajima, Keisuke</creatorcontrib><creatorcontrib>Yoshikawa, Yumi</creatorcontrib><creatorcontrib>Majima, Yutaka</creatorcontrib><creatorcontrib>Taniyama, Tomoyasu</creatorcontrib><creatorcontrib>Itoh, Mitsuru</creatorcontrib><title>Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Nanodot BaTiO3 supported LiCoO2 cathode thin films can dramatically improve high-rate chargeability and cyclability. The prepared BaTiO3 nanodot is &lt;3 nm in height and 35 nm in diameter, and its coverage is &lt;5%. Supported by high dielectric constant materials on the surface of cathode materials, Li ion (Li+) can intercalate through robust Li paths around the triple-phase interface consisting of the dielectric, cathode, and electrolyte. The current concentration around the triple-phase interface is observed by the finite element method and is in good agreement with the experimental data. The interfacial resistance between the cathode and electrolyte with nanodot BaTiO3 is smaller than that without nanodot BaTiO3. The decomposition of the organic solvent electrolyte can prevent the fabrication of a solid electrolyte interface around the triple-phase interface. Li+ paths may be created at non solid electrolyte interface covered regions by the strong current concentration originating from high dielectric constant materials on the cathode. Robust Li+ paths lead to excellent chargeability and cyclability.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwzAMhSsEEmPwDzjkyKXDabKsOUI1YNLEJNSdK7dz10xdAk122L8n0wYnW0_Pz_aXJI8cJhwy_oyNn1i0rqcQJnkNUmm4SkZ8KiBVWmfX_30ub5M773cAoMUURslxbju0De3JBuZatu7DgJ3ZduwLA7Giw2FLWJvehCOrj2xhAw0tNgZ79hlXblxgr1ialWDlQBjOOZYtTeFWGSswdG5DrOyMZW-m30dziAmG_H1y02Lv6eFSx8n6bV4WH-ly9b4oXpYpZkqGtJU1CCVIqWYjObQClUTNsea1jpoWKGqdNwgcqJUQn5cZcS1mbRxQQGKcPJ1zvwf3cyAfqr3xDfU9WnIHX2U8F0rO-ExFK5ytEWi1c4fBxsMqDtWJcnUS_yhXF8riF3e7dDA</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Yasuhara, Sou</creator><creator>Yasui, Shintaro</creator><creator>Teranishi, Takashi</creator><creator>Chajima, Keisuke</creator><creator>Yoshikawa, Yumi</creator><creator>Majima, Yutaka</creator><creator>Taniyama, Tomoyasu</creator><creator>Itoh, Mitsuru</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0524-9318</orcidid><orcidid>https://orcid.org/0000-0001-6457-9152</orcidid><orcidid>https://orcid.org/0000-0002-5108-1934</orcidid></search><sort><creationdate>20190313</creationdate><title>Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries</title><author>Yasuhara, Sou ; Yasui, Shintaro ; Teranishi, Takashi ; Chajima, Keisuke ; Yoshikawa, Yumi ; Majima, Yutaka ; Taniyama, Tomoyasu ; Itoh, Mitsuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a264t-f4b0363e66cd410f3a64a91ab1b966c93a3b98ca010ef40b0442e1937f6cd60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasuhara, Sou</creatorcontrib><creatorcontrib>Yasui, Shintaro</creatorcontrib><creatorcontrib>Teranishi, Takashi</creatorcontrib><creatorcontrib>Chajima, Keisuke</creatorcontrib><creatorcontrib>Yoshikawa, Yumi</creatorcontrib><creatorcontrib>Majima, Yutaka</creatorcontrib><creatorcontrib>Taniyama, Tomoyasu</creatorcontrib><creatorcontrib>Itoh, Mitsuru</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasuhara, Sou</au><au>Yasui, Shintaro</au><au>Teranishi, Takashi</au><au>Chajima, Keisuke</au><au>Yoshikawa, Yumi</au><au>Majima, Yutaka</au><au>Taniyama, Tomoyasu</au><au>Itoh, Mitsuru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-03-13</date><risdate>2019</risdate><volume>19</volume><issue>3</issue><spage>1688</spage><epage>1694</epage><pages>1688-1694</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Nanodot BaTiO3 supported LiCoO2 cathode thin films can dramatically improve high-rate chargeability and cyclability. The prepared BaTiO3 nanodot is &lt;3 nm in height and 35 nm in diameter, and its coverage is &lt;5%. Supported by high dielectric constant materials on the surface of cathode materials, Li ion (Li+) can intercalate through robust Li paths around the triple-phase interface consisting of the dielectric, cathode, and electrolyte. The current concentration around the triple-phase interface is observed by the finite element method and is in good agreement with the experimental data. The interfacial resistance between the cathode and electrolyte with nanodot BaTiO3 is smaller than that without nanodot BaTiO3. The decomposition of the organic solvent electrolyte can prevent the fabrication of a solid electrolyte interface around the triple-phase interface. Li+ paths may be created at non solid electrolyte interface covered regions by the strong current concentration originating from high dielectric constant materials on the cathode. Robust Li+ paths lead to excellent chargeability and cyclability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.8b04690</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0524-9318</orcidid><orcidid>https://orcid.org/0000-0001-6457-9152</orcidid><orcidid>https://orcid.org/0000-0002-5108-1934</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-03, Vol.19 (3), p.1688-1694
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2183647176
source ACS Publications
title Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO3 Treatment on LiCoO2 Cathode Thin Film Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Ultrahigh%20Rate%20Chargeability%20by%20Interfacial%20Nanodot%20BaTiO3%20Treatment%20on%20LiCoO2%20Cathode%20Thin%20Film%20Batteries&rft.jtitle=Nano%20letters&rft.au=Yasuhara,%20Sou&rft.date=2019-03-13&rft.volume=19&rft.issue=3&rft.spage=1688&rft.epage=1694&rft.pages=1688-1694&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b04690&rft_dat=%3Cproquest_acs_j%3E2183647176%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2183647176&rft_id=info:pmid/&rfr_iscdi=true