Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments

Manure application is widely recognized as a method of improving soil structure and soil fertility due to additional organic matter and nutrient inputs. However, the salinity of animal manure may have a detrimental effect on soil aggregation. The objective of this study was to determine the effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-04, Vol.660, p.1029-1037
Hauptverfasser: Guo, Zichun, Zhang, Jiabao, Fan, Jun, Yang, Xueyun, Yi, Yanli, Han, Xiaori, Wang, Daozhong, Zhu, Ping, Peng, Xinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manure application is widely recognized as a method of improving soil structure and soil fertility due to additional organic matter and nutrient inputs. However, the salinity of animal manure may have a detrimental effect on soil aggregation. The objective of this study was to determine the effects of long-term animal manure application on soil aggregation, binding agents (soil organic carbon, SOC and glomalin-related soil protein, GRSP), and dispersing agents (e.g., Na+) and their relationships based on nine long-term fertilization experiments (12 to 39 yr) across China. The two red soil experiments (Qiyang, QY and Jinxian, JX) and one paddy soil experiment in Jinxian (JX-P) were conducted in southern China (precipitation above 1200 mm yr−1), whereas the other six experiments were established in semi-humid or arid regions in China with precipitation in the range of 500–900 mm yr−1. Each experiment included three treatments as follows: no fertilization (Control), inorganic fertilizer (NP or NPK), and a combination of inorganic fertilizer and animal manure (NPM or NPKM). Long-term animal manure application not only significantly increased the biological binding agents (i.e., SOC and GRSP) in the nine experiments but also considerably increased the dispersing agents (i.e., exchangeable Na+) (P 
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2019.01.051