Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes
The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The se...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2019-04, Vol.58 (15), p.4983-4987 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4987 |
---|---|
container_issue | 15 |
container_start_page | 4983 |
container_title | Angewandte Chemie International Edition |
container_volume | 58 |
creator | Lyu, Yan Cui, Dong Huang, Jiaguo Fan, Wenxuan Miao, Yansong Pu, Kanyi |
description | The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The sensor is composed of a near‐infrared semiconducting polyelectrolyte (ASPN) that forms a complex with a quencher‐tagged aptamer. The afterglow signal of the nanocomplex (ASPNC), being initially quenched, is turned on in the presence of aptamer‐targeted exosomes. Because detection of the afterglow takes place after the excitation, background signals are minimized, leading to an improved limit of detection that is nearly two orders of magnitude lower than that of fluorescence detection in cell culture media. Also, ASPNC can be easily tailored to detect different exosomal proteins by changing the aptamer sequence. This enables an orthogonal analysis of multiple exosome samples, potentially permitting an accurate identification of the cellular origin of exosomes for cancer diagnosis.
Let there be light: The first luminescent nanosensor that bypasses real‐time light excitation for the multiplex differentiation of cancer exosomes is reported. It is composed of a near‐infrared semiconducting polyelectrolyte in complex with a quencher‐tagged aptamer. |
doi_str_mv | 10.1002/anie.201900092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179545957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196564413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5162-24f0009bc8b3fed7f6efa9bc4bf6cf3b306923475098a222396920cfc45348993</originalsourceid><addsrcrecordid>eNqF0c1OGzEQB3ALgYACV47IEpdeNvhzd32M0rREogGJ9rzyOmNqtGsHe1eQWx-hz9gnwVEolXrpyR7r57_GHoTOKZlQQtiV9g4mjFBFCFFsDx1TyWjBq4rv573gvKhqSY_Qh5Qes69rUh6iI04qwmhdH6O4BB1___y18DbqCCs8tQPEhy4843vonQl-NZrB-Qe81D5keBe6jQn9uoMXSNiGiIcfgL-O3eC2Z_iTsxYi-MHpwQWPg8Uz7Q1EPH8JKfSQTtGB1V2Cs7f1BH3_PP82uy5ubr8sZtObwkhasoIJu31Ta-qWW1hVtgSrcylaWxrLW05KxbioJFG1ZoxxlWtirBGSi1opfoI-7nLXMTyNkIamd8lA12kPYUwNo5WSQipZZXr5D30MY_S5u6xUKUshKM9qslMmhpQi2GYdXa_jpqGk2U6j2U6jeZ9GvnDxFju2Paze-Z_vz0DtwLPrYPOfuGa6XMz_hr8CPQCY-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196564413</pqid></control><display><type>article</type><title>Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes</title><source>Wiley Journals</source><creator>Lyu, Yan ; Cui, Dong ; Huang, Jiaguo ; Fan, Wenxuan ; Miao, Yansong ; Pu, Kanyi</creator><creatorcontrib>Lyu, Yan ; Cui, Dong ; Huang, Jiaguo ; Fan, Wenxuan ; Miao, Yansong ; Pu, Kanyi</creatorcontrib><description>The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The sensor is composed of a near‐infrared semiconducting polyelectrolyte (ASPN) that forms a complex with a quencher‐tagged aptamer. The afterglow signal of the nanocomplex (ASPNC), being initially quenched, is turned on in the presence of aptamer‐targeted exosomes. Because detection of the afterglow takes place after the excitation, background signals are minimized, leading to an improved limit of detection that is nearly two orders of magnitude lower than that of fluorescence detection in cell culture media. Also, ASPNC can be easily tailored to detect different exosomal proteins by changing the aptamer sequence. This enables an orthogonal analysis of multiple exosome samples, potentially permitting an accurate identification of the cellular origin of exosomes for cancer diagnosis.
Let there be light: The first luminescent nanosensor that bypasses real‐time light excitation for the multiplex differentiation of cancer exosomes is reported. It is composed of a near‐infrared semiconducting polyelectrolyte in complex with a quencher‐tagged aptamer.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201900092</identifier><identifier>PMID: 30702188</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aptamers ; biosensors ; Cancer ; Cell culture ; Culture media ; Diagnosis ; Differentiation ; Excitation ; Exosomes ; Fluorescence ; Multiplexing ; nanomaterials ; optical imaging ; Optical measuring instruments ; Polyelectrolytes ; Proteins ; semiconducting polymers</subject><ispartof>Angewandte Chemie International Edition, 2019-04, Vol.58 (15), p.4983-4987</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5162-24f0009bc8b3fed7f6efa9bc4bf6cf3b306923475098a222396920cfc45348993</citedby><cites>FETCH-LOGICAL-c5162-24f0009bc8b3fed7f6efa9bc4bf6cf3b306923475098a222396920cfc45348993</cites><orcidid>0000-0002-8064-6009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201900092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201900092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30702188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyu, Yan</creatorcontrib><creatorcontrib>Cui, Dong</creatorcontrib><creatorcontrib>Huang, Jiaguo</creatorcontrib><creatorcontrib>Fan, Wenxuan</creatorcontrib><creatorcontrib>Miao, Yansong</creatorcontrib><creatorcontrib>Pu, Kanyi</creatorcontrib><title>Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The sensor is composed of a near‐infrared semiconducting polyelectrolyte (ASPN) that forms a complex with a quencher‐tagged aptamer. The afterglow signal of the nanocomplex (ASPNC), being initially quenched, is turned on in the presence of aptamer‐targeted exosomes. Because detection of the afterglow takes place after the excitation, background signals are minimized, leading to an improved limit of detection that is nearly two orders of magnitude lower than that of fluorescence detection in cell culture media. Also, ASPNC can be easily tailored to detect different exosomal proteins by changing the aptamer sequence. This enables an orthogonal analysis of multiple exosome samples, potentially permitting an accurate identification of the cellular origin of exosomes for cancer diagnosis.
Let there be light: The first luminescent nanosensor that bypasses real‐time light excitation for the multiplex differentiation of cancer exosomes is reported. It is composed of a near‐infrared semiconducting polyelectrolyte in complex with a quencher‐tagged aptamer.</description><subject>Aptamers</subject><subject>biosensors</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Culture media</subject><subject>Diagnosis</subject><subject>Differentiation</subject><subject>Excitation</subject><subject>Exosomes</subject><subject>Fluorescence</subject><subject>Multiplexing</subject><subject>nanomaterials</subject><subject>optical imaging</subject><subject>Optical measuring instruments</subject><subject>Polyelectrolytes</subject><subject>Proteins</subject><subject>semiconducting polymers</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0c1OGzEQB3ALgYACV47IEpdeNvhzd32M0rREogGJ9rzyOmNqtGsHe1eQWx-hz9gnwVEolXrpyR7r57_GHoTOKZlQQtiV9g4mjFBFCFFsDx1TyWjBq4rv573gvKhqSY_Qh5Qes69rUh6iI04qwmhdH6O4BB1___y18DbqCCs8tQPEhy4843vonQl-NZrB-Qe81D5keBe6jQn9uoMXSNiGiIcfgL-O3eC2Z_iTsxYi-MHpwQWPg8Uz7Q1EPH8JKfSQTtGB1V2Cs7f1BH3_PP82uy5ubr8sZtObwkhasoIJu31Ta-qWW1hVtgSrcylaWxrLW05KxbioJFG1ZoxxlWtirBGSi1opfoI-7nLXMTyNkIamd8lA12kPYUwNo5WSQipZZXr5D30MY_S5u6xUKUshKM9qslMmhpQi2GYdXa_jpqGk2U6j2U6jeZ9GvnDxFju2Paze-Z_vz0DtwLPrYPOfuGa6XMz_hr8CPQCY-Q</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Lyu, Yan</creator><creator>Cui, Dong</creator><creator>Huang, Jiaguo</creator><creator>Fan, Wenxuan</creator><creator>Miao, Yansong</creator><creator>Pu, Kanyi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8064-6009</orcidid></search><sort><creationdate>20190401</creationdate><title>Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes</title><author>Lyu, Yan ; Cui, Dong ; Huang, Jiaguo ; Fan, Wenxuan ; Miao, Yansong ; Pu, Kanyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5162-24f0009bc8b3fed7f6efa9bc4bf6cf3b306923475098a222396920cfc45348993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aptamers</topic><topic>biosensors</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Culture media</topic><topic>Diagnosis</topic><topic>Differentiation</topic><topic>Excitation</topic><topic>Exosomes</topic><topic>Fluorescence</topic><topic>Multiplexing</topic><topic>nanomaterials</topic><topic>optical imaging</topic><topic>Optical measuring instruments</topic><topic>Polyelectrolytes</topic><topic>Proteins</topic><topic>semiconducting polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Yan</creatorcontrib><creatorcontrib>Cui, Dong</creatorcontrib><creatorcontrib>Huang, Jiaguo</creatorcontrib><creatorcontrib>Fan, Wenxuan</creatorcontrib><creatorcontrib>Miao, Yansong</creatorcontrib><creatorcontrib>Pu, Kanyi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Yan</au><au>Cui, Dong</au><au>Huang, Jiaguo</au><au>Fan, Wenxuan</au><au>Miao, Yansong</au><au>Pu, Kanyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>58</volume><issue>15</issue><spage>4983</spage><epage>4987</epage><pages>4983-4987</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The sensor is composed of a near‐infrared semiconducting polyelectrolyte (ASPN) that forms a complex with a quencher‐tagged aptamer. The afterglow signal of the nanocomplex (ASPNC), being initially quenched, is turned on in the presence of aptamer‐targeted exosomes. Because detection of the afterglow takes place after the excitation, background signals are minimized, leading to an improved limit of detection that is nearly two orders of magnitude lower than that of fluorescence detection in cell culture media. Also, ASPNC can be easily tailored to detect different exosomal proteins by changing the aptamer sequence. This enables an orthogonal analysis of multiple exosome samples, potentially permitting an accurate identification of the cellular origin of exosomes for cancer diagnosis.
Let there be light: The first luminescent nanosensor that bypasses real‐time light excitation for the multiplex differentiation of cancer exosomes is reported. It is composed of a near‐infrared semiconducting polyelectrolyte in complex with a quencher‐tagged aptamer.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30702188</pmid><doi>10.1002/anie.201900092</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8064-6009</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2019-04, Vol.58 (15), p.4983-4987 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179545957 |
source | Wiley Journals |
subjects | Aptamers biosensors Cancer Cell culture Culture media Diagnosis Differentiation Excitation Exosomes Fluorescence Multiplexing nanomaterials optical imaging Optical measuring instruments Polyelectrolytes Proteins semiconducting polymers |
title | Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared%20Afterglow%20Semiconducting%20Nano%E2%80%90Polycomplexes%20for%20the%20Multiplex%20Differentiation%20of%20Cancer%20Exosomes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lyu,%20Yan&rft.date=2019-04-01&rft.volume=58&rft.issue=15&rft.spage=4983&rft.epage=4987&rft.pages=4983-4987&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201900092&rft_dat=%3Cproquest_cross%3E2196564413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196564413&rft_id=info:pmid/30702188&rfr_iscdi=true |