Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes

The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2019-04, Vol.58 (15), p.4983-4987
Hauptverfasser: Lyu, Yan, Cui, Dong, Huang, Jiaguo, Fan, Wenxuan, Miao, Yansong, Pu, Kanyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4987
container_issue 15
container_start_page 4983
container_title Angewandte Chemie International Edition
container_volume 58
creator Lyu, Yan
Cui, Dong
Huang, Jiaguo
Fan, Wenxuan
Miao, Yansong
Pu, Kanyi
description The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The sensor is composed of a near‐infrared semiconducting polyelectrolyte (ASPN) that forms a complex with a quencher‐tagged aptamer. The afterglow signal of the nanocomplex (ASPNC), being initially quenched, is turned on in the presence of aptamer‐targeted exosomes. Because detection of the afterglow takes place after the excitation, background signals are minimized, leading to an improved limit of detection that is nearly two orders of magnitude lower than that of fluorescence detection in cell culture media. Also, ASPNC can be easily tailored to detect different exosomal proteins by changing the aptamer sequence. This enables an orthogonal analysis of multiple exosome samples, potentially permitting an accurate identification of the cellular origin of exosomes for cancer diagnosis. Let there be light: The first luminescent nanosensor that bypasses real‐time light excitation for the multiplex differentiation of cancer exosomes is reported. It is composed of a near‐infrared semiconducting polyelectrolyte in complex with a quencher‐tagged aptamer.
doi_str_mv 10.1002/anie.201900092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179545957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196564413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5162-24f0009bc8b3fed7f6efa9bc4bf6cf3b306923475098a222396920cfc45348993</originalsourceid><addsrcrecordid>eNqF0c1OGzEQB3ALgYACV47IEpdeNvhzd32M0rREogGJ9rzyOmNqtGsHe1eQWx-hz9gnwVEolXrpyR7r57_GHoTOKZlQQtiV9g4mjFBFCFFsDx1TyWjBq4rv573gvKhqSY_Qh5Qes69rUh6iI04qwmhdH6O4BB1___y18DbqCCs8tQPEhy4843vonQl-NZrB-Qe81D5keBe6jQn9uoMXSNiGiIcfgL-O3eC2Z_iTsxYi-MHpwQWPg8Uz7Q1EPH8JKfSQTtGB1V2Cs7f1BH3_PP82uy5ubr8sZtObwkhasoIJu31Ta-qWW1hVtgSrcylaWxrLW05KxbioJFG1ZoxxlWtirBGSi1opfoI-7nLXMTyNkIamd8lA12kPYUwNo5WSQipZZXr5D30MY_S5u6xUKUshKM9qslMmhpQi2GYdXa_jpqGk2U6j2U6jeZ9GvnDxFju2Paze-Z_vz0DtwLPrYPOfuGa6XMz_hr8CPQCY-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196564413</pqid></control><display><type>article</type><title>Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes</title><source>Wiley Journals</source><creator>Lyu, Yan ; Cui, Dong ; Huang, Jiaguo ; Fan, Wenxuan ; Miao, Yansong ; Pu, Kanyi</creator><creatorcontrib>Lyu, Yan ; Cui, Dong ; Huang, Jiaguo ; Fan, Wenxuan ; Miao, Yansong ; Pu, Kanyi</creatorcontrib><description>The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The sensor is composed of a near‐infrared semiconducting polyelectrolyte (ASPN) that forms a complex with a quencher‐tagged aptamer. The afterglow signal of the nanocomplex (ASPNC), being initially quenched, is turned on in the presence of aptamer‐targeted exosomes. Because detection of the afterglow takes place after the excitation, background signals are minimized, leading to an improved limit of detection that is nearly two orders of magnitude lower than that of fluorescence detection in cell culture media. Also, ASPNC can be easily tailored to detect different exosomal proteins by changing the aptamer sequence. This enables an orthogonal analysis of multiple exosome samples, potentially permitting an accurate identification of the cellular origin of exosomes for cancer diagnosis. Let there be light: The first luminescent nanosensor that bypasses real‐time light excitation for the multiplex differentiation of cancer exosomes is reported. It is composed of a near‐infrared semiconducting polyelectrolyte in complex with a quencher‐tagged aptamer.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201900092</identifier><identifier>PMID: 30702188</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aptamers ; biosensors ; Cancer ; Cell culture ; Culture media ; Diagnosis ; Differentiation ; Excitation ; Exosomes ; Fluorescence ; Multiplexing ; nanomaterials ; optical imaging ; Optical measuring instruments ; Polyelectrolytes ; Proteins ; semiconducting polymers</subject><ispartof>Angewandte Chemie International Edition, 2019-04, Vol.58 (15), p.4983-4987</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5162-24f0009bc8b3fed7f6efa9bc4bf6cf3b306923475098a222396920cfc45348993</citedby><cites>FETCH-LOGICAL-c5162-24f0009bc8b3fed7f6efa9bc4bf6cf3b306923475098a222396920cfc45348993</cites><orcidid>0000-0002-8064-6009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201900092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201900092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30702188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyu, Yan</creatorcontrib><creatorcontrib>Cui, Dong</creatorcontrib><creatorcontrib>Huang, Jiaguo</creatorcontrib><creatorcontrib>Fan, Wenxuan</creatorcontrib><creatorcontrib>Miao, Yansong</creatorcontrib><creatorcontrib>Pu, Kanyi</creatorcontrib><title>Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The sensor is composed of a near‐infrared semiconducting polyelectrolyte (ASPN) that forms a complex with a quencher‐tagged aptamer. The afterglow signal of the nanocomplex (ASPNC), being initially quenched, is turned on in the presence of aptamer‐targeted exosomes. Because detection of the afterglow takes place after the excitation, background signals are minimized, leading to an improved limit of detection that is nearly two orders of magnitude lower than that of fluorescence detection in cell culture media. Also, ASPNC can be easily tailored to detect different exosomal proteins by changing the aptamer sequence. This enables an orthogonal analysis of multiple exosome samples, potentially permitting an accurate identification of the cellular origin of exosomes for cancer diagnosis. Let there be light: The first luminescent nanosensor that bypasses real‐time light excitation for the multiplex differentiation of cancer exosomes is reported. It is composed of a near‐infrared semiconducting polyelectrolyte in complex with a quencher‐tagged aptamer.</description><subject>Aptamers</subject><subject>biosensors</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Culture media</subject><subject>Diagnosis</subject><subject>Differentiation</subject><subject>Excitation</subject><subject>Exosomes</subject><subject>Fluorescence</subject><subject>Multiplexing</subject><subject>nanomaterials</subject><subject>optical imaging</subject><subject>Optical measuring instruments</subject><subject>Polyelectrolytes</subject><subject>Proteins</subject><subject>semiconducting polymers</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0c1OGzEQB3ALgYACV47IEpdeNvhzd32M0rREogGJ9rzyOmNqtGsHe1eQWx-hz9gnwVEolXrpyR7r57_GHoTOKZlQQtiV9g4mjFBFCFFsDx1TyWjBq4rv573gvKhqSY_Qh5Qes69rUh6iI04qwmhdH6O4BB1___y18DbqCCs8tQPEhy4843vonQl-NZrB-Qe81D5keBe6jQn9uoMXSNiGiIcfgL-O3eC2Z_iTsxYi-MHpwQWPg8Uz7Q1EPH8JKfSQTtGB1V2Cs7f1BH3_PP82uy5ubr8sZtObwkhasoIJu31Ta-qWW1hVtgSrcylaWxrLW05KxbioJFG1ZoxxlWtirBGSi1opfoI-7nLXMTyNkIamd8lA12kPYUwNo5WSQipZZXr5D30MY_S5u6xUKUshKM9qslMmhpQi2GYdXa_jpqGk2U6j2U6jeZ9GvnDxFju2Paze-Z_vz0DtwLPrYPOfuGa6XMz_hr8CPQCY-Q</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Lyu, Yan</creator><creator>Cui, Dong</creator><creator>Huang, Jiaguo</creator><creator>Fan, Wenxuan</creator><creator>Miao, Yansong</creator><creator>Pu, Kanyi</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8064-6009</orcidid></search><sort><creationdate>20190401</creationdate><title>Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes</title><author>Lyu, Yan ; Cui, Dong ; Huang, Jiaguo ; Fan, Wenxuan ; Miao, Yansong ; Pu, Kanyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5162-24f0009bc8b3fed7f6efa9bc4bf6cf3b306923475098a222396920cfc45348993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aptamers</topic><topic>biosensors</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Culture media</topic><topic>Diagnosis</topic><topic>Differentiation</topic><topic>Excitation</topic><topic>Exosomes</topic><topic>Fluorescence</topic><topic>Multiplexing</topic><topic>nanomaterials</topic><topic>optical imaging</topic><topic>Optical measuring instruments</topic><topic>Polyelectrolytes</topic><topic>Proteins</topic><topic>semiconducting polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Yan</creatorcontrib><creatorcontrib>Cui, Dong</creatorcontrib><creatorcontrib>Huang, Jiaguo</creatorcontrib><creatorcontrib>Fan, Wenxuan</creatorcontrib><creatorcontrib>Miao, Yansong</creatorcontrib><creatorcontrib>Pu, Kanyi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Yan</au><au>Cui, Dong</au><au>Huang, Jiaguo</au><au>Fan, Wenxuan</au><au>Miao, Yansong</au><au>Pu, Kanyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>58</volume><issue>15</issue><spage>4983</spage><epage>4987</epage><pages>4983-4987</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The detection of exosomes is promising for the early diagnosis of cancer. However, the development of suitable optical sensors remains challenging. We have developed the first luminescent nanosensor for the multiplex differentiation of cancer exosomes that bypasses real‐time light excitation. The sensor is composed of a near‐infrared semiconducting polyelectrolyte (ASPN) that forms a complex with a quencher‐tagged aptamer. The afterglow signal of the nanocomplex (ASPNC), being initially quenched, is turned on in the presence of aptamer‐targeted exosomes. Because detection of the afterglow takes place after the excitation, background signals are minimized, leading to an improved limit of detection that is nearly two orders of magnitude lower than that of fluorescence detection in cell culture media. Also, ASPNC can be easily tailored to detect different exosomal proteins by changing the aptamer sequence. This enables an orthogonal analysis of multiple exosome samples, potentially permitting an accurate identification of the cellular origin of exosomes for cancer diagnosis. Let there be light: The first luminescent nanosensor that bypasses real‐time light excitation for the multiplex differentiation of cancer exosomes is reported. It is composed of a near‐infrared semiconducting polyelectrolyte in complex with a quencher‐tagged aptamer.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30702188</pmid><doi>10.1002/anie.201900092</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8064-6009</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2019-04, Vol.58 (15), p.4983-4987
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2179545957
source Wiley Journals
subjects Aptamers
biosensors
Cancer
Cell culture
Culture media
Diagnosis
Differentiation
Excitation
Exosomes
Fluorescence
Multiplexing
nanomaterials
optical imaging
Optical measuring instruments
Polyelectrolytes
Proteins
semiconducting polymers
title Near‐Infrared Afterglow Semiconducting Nano‐Polycomplexes for the Multiplex Differentiation of Cancer Exosomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90Infrared%20Afterglow%20Semiconducting%20Nano%E2%80%90Polycomplexes%20for%20the%20Multiplex%20Differentiation%20of%20Cancer%20Exosomes&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lyu,%20Yan&rft.date=2019-04-01&rft.volume=58&rft.issue=15&rft.spage=4983&rft.epage=4987&rft.pages=4983-4987&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201900092&rft_dat=%3Cproquest_cross%3E2196564413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196564413&rft_id=info:pmid/30702188&rfr_iscdi=true