Metformin and gut microbiota: their interactions and their impact on diabetes

The ratio of human to bacterial cells in the human body (microbiota) is around 1:1. As a result of co-evolution of the host mucosal immune system and the microbiota, both have developed multiple mechanisms to maintain homeostasis. However, dissociations between the composition of the gut microbiota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hormones (Athens, Greece) Greece), 2019-06, Vol.18 (2), p.141-144
Hauptverfasser: Vallianou, Natalia G., Stratigou, Theodora, Tsagarakis, Stylianos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ratio of human to bacterial cells in the human body (microbiota) is around 1:1. As a result of co-evolution of the host mucosal immune system and the microbiota, both have developed multiple mechanisms to maintain homeostasis. However, dissociations between the composition of the gut microbiota and the human host may play a crucial role in the development of type 2 diabetes. Metformin, the most frequently administered medication to treat patients with type 2 diabetes, has only recently been suggested to alter gut microbiota composition through the increase in mucin-degrading Akkermansia muciniphila , as well as several SCFA-producing (short-chain fatty acid) microbiota. The gut microbiota of participants on metformin has exerted alterations in gut metabolomics with increased ability to produce butyrate and propionate, substances involved in glucose homeostasis. Thus, metformin appears to affect the microbiome, and an individual’s metformin tolerance or intolerance may be influenced by their microbiome. In this review, we will focus on the effects of metformin in gut microbiota among patients with T2DM.
ISSN:1109-3099
2520-8721
DOI:10.1007/s42000-019-00093-w