Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation
One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 n...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2019-05, Vol.25 (29), p.7168-7176 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7176 |
---|---|
container_issue | 29 |
container_start_page | 7168 |
container_title | Chemistry : a European journal |
container_volume | 25 |
creator | Ma, Jianlong Yan, Chaoxian Li, Yijing Duo, Huixiao Li, Qiang Lu, Xiaofeng Guo, Yong |
description | One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes.
Detecting HClO: A highly selective and sensitive probe (CyHR) for detecting HClO was developed. The probe mechanism is based on the electrophilic addition of Cl+ (from the decomposition of HClO) to the phenolic hydroxyl of CyHR. The reaction process was systematically analyzed by MS, NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. All analysis results suggest the formation of a Cl−O bond. |
doi_str_mv | 10.1002/chem.201806264 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179531709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179531709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-66f066a60ad56cfb875afc0af3afb7e61489c379e085644cbe780f7eec4ef9ae3</originalsourceid><addsrcrecordid>eNqFkMFqGzEQhkVoIK6ba84LuaSHdUcrrbQ6JkscFxIMITkLWR7ZMruSs8rS-pZjzukb5km6xqGFXnoaGL7vZ-Yn5IzChAIU3-wa20kBtAJRCH5ERrQsaM6kKD-RESguc1EydUI-p7QBACUYGxH_GPrUmyab7bbRrpvYxT5ll9Yvs4tZ3cy_Zvdo4yr4Zx9Ddod2bYJPbXZlEi6zYVXvHR_w_eXX_OduhSG7imGQ6-b99W3Qp7FrzV7-Qo6daRKefswxeZxeP9Sz_HZ-872-vM0tqyTPhXAghBFglqWwblHJ0jgLxjHjFhIF5ZWyTCqEqhSc2wXKCpxEtBydMsjG5OKQu-3iU4_pWbc-WWwaE3D4TRdUqpJRCWpAz_9BN7HvwnCdLopCCQ6csYGaHCjbxZQ6dHrb-dZ0O01B75vX--b1n-YHQR2EH77B3X9oXc-u7_66vwGBboko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229640433</pqid></control><display><type>article</type><title>Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation</title><source>Access via Wiley Online Library</source><creator>Ma, Jianlong ; Yan, Chaoxian ; Li, Yijing ; Duo, Huixiao ; Li, Qiang ; Lu, Xiaofeng ; Guo, Yong</creator><creatorcontrib>Ma, Jianlong ; Yan, Chaoxian ; Li, Yijing ; Duo, Huixiao ; Li, Qiang ; Lu, Xiaofeng ; Guo, Yong</creatorcontrib><description>One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes.
Detecting HClO: A highly selective and sensitive probe (CyHR) for detecting HClO was developed. The probe mechanism is based on the electrophilic addition of Cl+ (from the decomposition of HClO) to the phenolic hydroxyl of CyHR. The reaction process was systematically analyzed by MS, NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. All analysis results suggest the formation of a Cl−O bond.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201806264</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aromatic compounds ; Chemical bonds ; Chemistry ; Chlorine ; chlorine–oxygen bond ; Fluorescence ; fluorescence probes ; Fluorescent indicators ; High-performance liquid chromatography ; Hypochlorous acid ; Liquid chromatography ; Macrophages ; Magnetic resonance spectroscopy ; near-infrared fluorescence bioimaging ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Oxygen ; Physiology ; Reaction mechanisms ; Reactive oxygen species</subject><ispartof>Chemistry : a European journal, 2019-05, Vol.25 (29), p.7168-7176</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-66f066a60ad56cfb875afc0af3afb7e61489c379e085644cbe780f7eec4ef9ae3</citedby><cites>FETCH-LOGICAL-c3874-66f066a60ad56cfb875afc0af3afb7e61489c379e085644cbe780f7eec4ef9ae3</cites><orcidid>0000-0002-8294-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201806264$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201806264$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Ma, Jianlong</creatorcontrib><creatorcontrib>Yan, Chaoxian</creatorcontrib><creatorcontrib>Li, Yijing</creatorcontrib><creatorcontrib>Duo, Huixiao</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Lu, Xiaofeng</creatorcontrib><creatorcontrib>Guo, Yong</creatorcontrib><title>Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation</title><title>Chemistry : a European journal</title><description>One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes.
Detecting HClO: A highly selective and sensitive probe (CyHR) for detecting HClO was developed. The probe mechanism is based on the electrophilic addition of Cl+ (from the decomposition of HClO) to the phenolic hydroxyl of CyHR. The reaction process was systematically analyzed by MS, NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. All analysis results suggest the formation of a Cl−O bond.</description><subject>Aromatic compounds</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chlorine</subject><subject>chlorine–oxygen bond</subject><subject>Fluorescence</subject><subject>fluorescence probes</subject><subject>Fluorescent indicators</subject><subject>High-performance liquid chromatography</subject><subject>Hypochlorous acid</subject><subject>Liquid chromatography</subject><subject>Macrophages</subject><subject>Magnetic resonance spectroscopy</subject><subject>near-infrared fluorescence bioimaging</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Oxygen</subject><subject>Physiology</subject><subject>Reaction mechanisms</subject><subject>Reactive oxygen species</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqGzEQhkVoIK6ba84LuaSHdUcrrbQ6JkscFxIMITkLWR7ZMruSs8rS-pZjzukb5km6xqGFXnoaGL7vZ-Yn5IzChAIU3-wa20kBtAJRCH5ERrQsaM6kKD-RESguc1EydUI-p7QBACUYGxH_GPrUmyab7bbRrpvYxT5ll9Yvs4tZ3cy_Zvdo4yr4Zx9Ddod2bYJPbXZlEi6zYVXvHR_w_eXX_OduhSG7imGQ6-b99W3Qp7FrzV7-Qo6daRKefswxeZxeP9Sz_HZ-872-vM0tqyTPhXAghBFglqWwblHJ0jgLxjHjFhIF5ZWyTCqEqhSc2wXKCpxEtBydMsjG5OKQu-3iU4_pWbc-WWwaE3D4TRdUqpJRCWpAz_9BN7HvwnCdLopCCQ6csYGaHCjbxZQ6dHrb-dZ0O01B75vX--b1n-YHQR2EH77B3X9oXc-u7_66vwGBboko</recordid><startdate>20190523</startdate><enddate>20190523</enddate><creator>Ma, Jianlong</creator><creator>Yan, Chaoxian</creator><creator>Li, Yijing</creator><creator>Duo, Huixiao</creator><creator>Li, Qiang</creator><creator>Lu, Xiaofeng</creator><creator>Guo, Yong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8294-3867</orcidid></search><sort><creationdate>20190523</creationdate><title>Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation</title><author>Ma, Jianlong ; Yan, Chaoxian ; Li, Yijing ; Duo, Huixiao ; Li, Qiang ; Lu, Xiaofeng ; Guo, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-66f066a60ad56cfb875afc0af3afb7e61489c379e085644cbe780f7eec4ef9ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aromatic compounds</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chlorine</topic><topic>chlorine–oxygen bond</topic><topic>Fluorescence</topic><topic>fluorescence probes</topic><topic>Fluorescent indicators</topic><topic>High-performance liquid chromatography</topic><topic>Hypochlorous acid</topic><topic>Liquid chromatography</topic><topic>Macrophages</topic><topic>Magnetic resonance spectroscopy</topic><topic>near-infrared fluorescence bioimaging</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Oxygen</topic><topic>Physiology</topic><topic>Reaction mechanisms</topic><topic>Reactive oxygen species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jianlong</creatorcontrib><creatorcontrib>Yan, Chaoxian</creatorcontrib><creatorcontrib>Li, Yijing</creatorcontrib><creatorcontrib>Duo, Huixiao</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Lu, Xiaofeng</creatorcontrib><creatorcontrib>Guo, Yong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jianlong</au><au>Yan, Chaoxian</au><au>Li, Yijing</au><au>Duo, Huixiao</au><au>Li, Qiang</au><au>Lu, Xiaofeng</au><au>Guo, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation</atitle><jtitle>Chemistry : a European journal</jtitle><date>2019-05-23</date><risdate>2019</risdate><volume>25</volume><issue>29</issue><spage>7168</spage><epage>7176</epage><pages>7168-7176</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes.
Detecting HClO: A highly selective and sensitive probe (CyHR) for detecting HClO was developed. The probe mechanism is based on the electrophilic addition of Cl+ (from the decomposition of HClO) to the phenolic hydroxyl of CyHR. The reaction process was systematically analyzed by MS, NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. All analysis results suggest the formation of a Cl−O bond.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.201806264</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8294-3867</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2019-05, Vol.25 (29), p.7168-7176 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179531709 |
source | Access via Wiley Online Library |
subjects | Aromatic compounds Chemical bonds Chemistry Chlorine chlorine–oxygen bond Fluorescence fluorescence probes Fluorescent indicators High-performance liquid chromatography Hypochlorous acid Liquid chromatography Macrophages Magnetic resonance spectroscopy near-infrared fluorescence bioimaging NMR NMR spectroscopy Nuclear magnetic resonance Oxygen Physiology Reaction mechanisms Reactive oxygen species |
title | Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Hypochlorous%20Acid%20(HClO)%20Recognition%20Mechanism%20Based%20on%20Chlorine%E2%80%93Oxygen%20Bond%20(Cl%E2%88%92O)%20Formation&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Ma,%20Jianlong&rft.date=2019-05-23&rft.volume=25&rft.issue=29&rft.spage=7168&rft.epage=7176&rft.pages=7168-7176&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201806264&rft_dat=%3Cproquest_cross%3E2179531709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229640433&rft_id=info:pmid/&rfr_iscdi=true |