Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation

One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2019-05, Vol.25 (29), p.7168-7176
Hauptverfasser: Ma, Jianlong, Yan, Chaoxian, Li, Yijing, Duo, Huixiao, Li, Qiang, Lu, Xiaofeng, Guo, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7176
container_issue 29
container_start_page 7168
container_title Chemistry : a European journal
container_volume 25
creator Ma, Jianlong
Yan, Chaoxian
Li, Yijing
Duo, Huixiao
Li, Qiang
Lu, Xiaofeng
Guo, Yong
description One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes. Detecting HClO: A highly selective and sensitive probe (CyHR) for detecting HClO was developed. The probe mechanism is based on the electrophilic addition of Cl+ (from the decomposition of HClO) to the phenolic hydroxyl of CyHR. The reaction process was systematically analyzed by MS, NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. All analysis results suggest the formation of a Cl−O bond.
doi_str_mv 10.1002/chem.201806264
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179531709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179531709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-66f066a60ad56cfb875afc0af3afb7e61489c379e085644cbe780f7eec4ef9ae3</originalsourceid><addsrcrecordid>eNqFkMFqGzEQhkVoIK6ba84LuaSHdUcrrbQ6JkscFxIMITkLWR7ZMruSs8rS-pZjzukb5km6xqGFXnoaGL7vZ-Yn5IzChAIU3-wa20kBtAJRCH5ERrQsaM6kKD-RESguc1EydUI-p7QBACUYGxH_GPrUmyab7bbRrpvYxT5ll9Yvs4tZ3cy_Zvdo4yr4Zx9Ddod2bYJPbXZlEi6zYVXvHR_w_eXX_OduhSG7imGQ6-b99W3Qp7FrzV7-Qo6daRKefswxeZxeP9Sz_HZ-872-vM0tqyTPhXAghBFglqWwblHJ0jgLxjHjFhIF5ZWyTCqEqhSc2wXKCpxEtBydMsjG5OKQu-3iU4_pWbc-WWwaE3D4TRdUqpJRCWpAz_9BN7HvwnCdLopCCQ6csYGaHCjbxZQ6dHrb-dZ0O01B75vX--b1n-YHQR2EH77B3X9oXc-u7_66vwGBboko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229640433</pqid></control><display><type>article</type><title>Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation</title><source>Access via Wiley Online Library</source><creator>Ma, Jianlong ; Yan, Chaoxian ; Li, Yijing ; Duo, Huixiao ; Li, Qiang ; Lu, Xiaofeng ; Guo, Yong</creator><creatorcontrib>Ma, Jianlong ; Yan, Chaoxian ; Li, Yijing ; Duo, Huixiao ; Li, Qiang ; Lu, Xiaofeng ; Guo, Yong</creatorcontrib><description>One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes. Detecting HClO: A highly selective and sensitive probe (CyHR) for detecting HClO was developed. The probe mechanism is based on the electrophilic addition of Cl+ (from the decomposition of HClO) to the phenolic hydroxyl of CyHR. The reaction process was systematically analyzed by MS, NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. All analysis results suggest the formation of a Cl−O bond.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201806264</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aromatic compounds ; Chemical bonds ; Chemistry ; Chlorine ; chlorine–oxygen bond ; Fluorescence ; fluorescence probes ; Fluorescent indicators ; High-performance liquid chromatography ; Hypochlorous acid ; Liquid chromatography ; Macrophages ; Magnetic resonance spectroscopy ; near-infrared fluorescence bioimaging ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Oxygen ; Physiology ; Reaction mechanisms ; Reactive oxygen species</subject><ispartof>Chemistry : a European journal, 2019-05, Vol.25 (29), p.7168-7176</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-66f066a60ad56cfb875afc0af3afb7e61489c379e085644cbe780f7eec4ef9ae3</citedby><cites>FETCH-LOGICAL-c3874-66f066a60ad56cfb875afc0af3afb7e61489c379e085644cbe780f7eec4ef9ae3</cites><orcidid>0000-0002-8294-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201806264$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201806264$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Ma, Jianlong</creatorcontrib><creatorcontrib>Yan, Chaoxian</creatorcontrib><creatorcontrib>Li, Yijing</creatorcontrib><creatorcontrib>Duo, Huixiao</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Lu, Xiaofeng</creatorcontrib><creatorcontrib>Guo, Yong</creatorcontrib><title>Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation</title><title>Chemistry : a European journal</title><description>One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes. Detecting HClO: A highly selective and sensitive probe (CyHR) for detecting HClO was developed. The probe mechanism is based on the electrophilic addition of Cl+ (from the decomposition of HClO) to the phenolic hydroxyl of CyHR. The reaction process was systematically analyzed by MS, NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. All analysis results suggest the formation of a Cl−O bond.</description><subject>Aromatic compounds</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chlorine</subject><subject>chlorine–oxygen bond</subject><subject>Fluorescence</subject><subject>fluorescence probes</subject><subject>Fluorescent indicators</subject><subject>High-performance liquid chromatography</subject><subject>Hypochlorous acid</subject><subject>Liquid chromatography</subject><subject>Macrophages</subject><subject>Magnetic resonance spectroscopy</subject><subject>near-infrared fluorescence bioimaging</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Oxygen</subject><subject>Physiology</subject><subject>Reaction mechanisms</subject><subject>Reactive oxygen species</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqGzEQhkVoIK6ba84LuaSHdUcrrbQ6JkscFxIMITkLWR7ZMruSs8rS-pZjzukb5km6xqGFXnoaGL7vZ-Yn5IzChAIU3-wa20kBtAJRCH5ERrQsaM6kKD-RESguc1EydUI-p7QBACUYGxH_GPrUmyab7bbRrpvYxT5ll9Yvs4tZ3cy_Zvdo4yr4Zx9Ddod2bYJPbXZlEi6zYVXvHR_w_eXX_OduhSG7imGQ6-b99W3Qp7FrzV7-Qo6daRKefswxeZxeP9Sz_HZ-872-vM0tqyTPhXAghBFglqWwblHJ0jgLxjHjFhIF5ZWyTCqEqhSc2wXKCpxEtBydMsjG5OKQu-3iU4_pWbc-WWwaE3D4TRdUqpJRCWpAz_9BN7HvwnCdLopCCQ6csYGaHCjbxZQ6dHrb-dZ0O01B75vX--b1n-YHQR2EH77B3X9oXc-u7_66vwGBboko</recordid><startdate>20190523</startdate><enddate>20190523</enddate><creator>Ma, Jianlong</creator><creator>Yan, Chaoxian</creator><creator>Li, Yijing</creator><creator>Duo, Huixiao</creator><creator>Li, Qiang</creator><creator>Lu, Xiaofeng</creator><creator>Guo, Yong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8294-3867</orcidid></search><sort><creationdate>20190523</creationdate><title>Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation</title><author>Ma, Jianlong ; Yan, Chaoxian ; Li, Yijing ; Duo, Huixiao ; Li, Qiang ; Lu, Xiaofeng ; Guo, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-66f066a60ad56cfb875afc0af3afb7e61489c379e085644cbe780f7eec4ef9ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aromatic compounds</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chlorine</topic><topic>chlorine–oxygen bond</topic><topic>Fluorescence</topic><topic>fluorescence probes</topic><topic>Fluorescent indicators</topic><topic>High-performance liquid chromatography</topic><topic>Hypochlorous acid</topic><topic>Liquid chromatography</topic><topic>Macrophages</topic><topic>Magnetic resonance spectroscopy</topic><topic>near-infrared fluorescence bioimaging</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Oxygen</topic><topic>Physiology</topic><topic>Reaction mechanisms</topic><topic>Reactive oxygen species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jianlong</creatorcontrib><creatorcontrib>Yan, Chaoxian</creatorcontrib><creatorcontrib>Li, Yijing</creatorcontrib><creatorcontrib>Duo, Huixiao</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Lu, Xiaofeng</creatorcontrib><creatorcontrib>Guo, Yong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jianlong</au><au>Yan, Chaoxian</au><au>Li, Yijing</au><au>Duo, Huixiao</au><au>Li, Qiang</au><au>Lu, Xiaofeng</au><au>Guo, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation</atitle><jtitle>Chemistry : a European journal</jtitle><date>2019-05-23</date><risdate>2019</risdate><volume>25</volume><issue>29</issue><spage>7168</spage><epage>7176</epage><pages>7168-7176</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near‐infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO‐related physiological and pathological studies and may provide a means for designing HClO‐specific fluorescence probes. Detecting HClO: A highly selective and sensitive probe (CyHR) for detecting HClO was developed. The probe mechanism is based on the electrophilic addition of Cl+ (from the decomposition of HClO) to the phenolic hydroxyl of CyHR. The reaction process was systematically analyzed by MS, NMR spectroscopy, HPLC‐MS techniques, and theoretical calculations. All analysis results suggest the formation of a Cl−O bond.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.201806264</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8294-3867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2019-05, Vol.25 (29), p.7168-7176
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2179531709
source Access via Wiley Online Library
subjects Aromatic compounds
Chemical bonds
Chemistry
Chlorine
chlorine–oxygen bond
Fluorescence
fluorescence probes
Fluorescent indicators
High-performance liquid chromatography
Hypochlorous acid
Liquid chromatography
Macrophages
Magnetic resonance spectroscopy
near-infrared fluorescence bioimaging
NMR
NMR spectroscopy
Nuclear magnetic resonance
Oxygen
Physiology
Reaction mechanisms
Reactive oxygen species
title Unusual Hypochlorous Acid (HClO) Recognition Mechanism Based on Chlorine–Oxygen Bond (Cl−O) Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Hypochlorous%20Acid%20(HClO)%20Recognition%20Mechanism%20Based%20on%20Chlorine%E2%80%93Oxygen%20Bond%20(Cl%E2%88%92O)%20Formation&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Ma,%20Jianlong&rft.date=2019-05-23&rft.volume=25&rft.issue=29&rft.spage=7168&rft.epage=7176&rft.pages=7168-7176&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201806264&rft_dat=%3Cproquest_cross%3E2179531709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229640433&rft_id=info:pmid/&rfr_iscdi=true