Cancer Target Gene Screening: a web application for breast cancer target gene screening using multi-omics data analysis

Abstract Breast cancer comprises several molecular subtypes with distinct clinical features and treatment responses, and a substantial portion of each subtype remains incurable. A comprehensive analysis of multi-omics data and clinical profiles is required in order to better understand the biologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2020-03, Vol.21 (2), p.663-675
Hauptverfasser: Kim, Hyung-Yong, Choi, Hee-Joo, Lee, Jeong-Yeon, Kong, Gu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 675
container_issue 2
container_start_page 663
container_title Briefings in bioinformatics
container_volume 21
creator Kim, Hyung-Yong
Choi, Hee-Joo
Lee, Jeong-Yeon
Kong, Gu
description Abstract Breast cancer comprises several molecular subtypes with distinct clinical features and treatment responses, and a substantial portion of each subtype remains incurable. A comprehensive analysis of multi-omics data and clinical profiles is required in order to better understand the biological complexity of this cancer type and to identify new prognostic and therapeutic markers. Thus, there arises a need for useful analytical tools to assist in the investigation and clinical management of the disease. We developed Cancer Target Gene Screening (CTGS), a web application that provides rapid and user-friendly analysis of multi-omics data sets from a large number of primary breast tumors. It allows the investigation of genomic and epigenomic aberrations, evaluation of transcriptomic profiles and performance of survival analyses and of bivariate correlations between layers of omics data. Notably, the genome-wide screening function of CTGS prioritizes candidate genes of clinical and biological significance among genes with copy number alteration, DNA methylation and dysregulated expression by the integrative analysis of different types of omics data in customized subgroups of breast cancer patients. These features may help in the identification of druggable cancer driver genes in a specific subtype or the clinical condition of human breast cancer. CTGS is available at http://ctgs.biohackers.net.
doi_str_mv 10.1093/bib/bbz003
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179521634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbz003</oup_id><sourcerecordid>2429011020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-94aa0eb3ef478393f73589f64a9804b1b50cab01fbbe9845bfa72620116844b83</originalsourceid><addsrcrecordid>eNp9kc1LxDAQxYMoun5c_AMkIIIIdZMmbRNvsugqCB5cz2USp0ukXyYton-9WaoePHiZmcPvPYb3CDnm7JIzLebGmbkxn4yJLTLjsigSyTK5vbnzIslkLvbIfgivjKWsUHyX7AmWa5ULNSPvC2gteroCv8aBLrFF-mQ9Yuva9RUF-o6GQt_XzsLgupZWnafGI4SB2kk6TNL1Rhp-pHQMm9mM9eCSrnE20BcYgEIL9Udw4ZDsVFAHPPreB-T59ma1uEseHpf3i-uHxAqZDYmWAAyNwEoWSmhRFSJTusolaMWk4SZjFgzjlTGolcxMBUWap4zzXElplDgg55Nv77u3EcNQNi5YrGtosRtDmfJCZynPhYzo6R_0tRt9_DdSMtXRM-YXqYuJsr4LwWNV9t414D9KzspNHWWso5zqiPDJt-VoGnz5RX_yj8DZBHRj_5_RF3s_krs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429011020</pqid></control><display><type>article</type><title>Cancer Target Gene Screening: a web application for breast cancer target gene screening using multi-omics data analysis</title><source>Oxford Journals Open Access Collection</source><creator>Kim, Hyung-Yong ; Choi, Hee-Joo ; Lee, Jeong-Yeon ; Kong, Gu</creator><creatorcontrib>Kim, Hyung-Yong ; Choi, Hee-Joo ; Lee, Jeong-Yeon ; Kong, Gu</creatorcontrib><description>Abstract Breast cancer comprises several molecular subtypes with distinct clinical features and treatment responses, and a substantial portion of each subtype remains incurable. A comprehensive analysis of multi-omics data and clinical profiles is required in order to better understand the biological complexity of this cancer type and to identify new prognostic and therapeutic markers. Thus, there arises a need for useful analytical tools to assist in the investigation and clinical management of the disease. We developed Cancer Target Gene Screening (CTGS), a web application that provides rapid and user-friendly analysis of multi-omics data sets from a large number of primary breast tumors. It allows the investigation of genomic and epigenomic aberrations, evaluation of transcriptomic profiles and performance of survival analyses and of bivariate correlations between layers of omics data. Notably, the genome-wide screening function of CTGS prioritizes candidate genes of clinical and biological significance among genes with copy number alteration, DNA methylation and dysregulated expression by the integrative analysis of different types of omics data in customized subgroups of breast cancer patients. These features may help in the identification of druggable cancer driver genes in a specific subtype or the clinical condition of human breast cancer. CTGS is available at http://ctgs.biohackers.net.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbz003</identifier><identifier>PMID: 30698638</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Applications programs ; Bivariate analysis ; Breast cancer ; Copy number ; Correlation analysis ; Data analysis ; Deoxyribonucleic acid ; DNA ; DNA methylation ; Gene expression ; Genes ; Genomes ; Subgroups ; Tumors</subject><ispartof>Briefings in bioinformatics, 2020-03, Vol.21 (2), p.663-675</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-94aa0eb3ef478393f73589f64a9804b1b50cab01fbbe9845bfa72620116844b83</citedby><cites>FETCH-LOGICAL-c345t-94aa0eb3ef478393f73589f64a9804b1b50cab01fbbe9845bfa72620116844b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbz003$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30698638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hyung-Yong</creatorcontrib><creatorcontrib>Choi, Hee-Joo</creatorcontrib><creatorcontrib>Lee, Jeong-Yeon</creatorcontrib><creatorcontrib>Kong, Gu</creatorcontrib><title>Cancer Target Gene Screening: a web application for breast cancer target gene screening using multi-omics data analysis</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Breast cancer comprises several molecular subtypes with distinct clinical features and treatment responses, and a substantial portion of each subtype remains incurable. A comprehensive analysis of multi-omics data and clinical profiles is required in order to better understand the biological complexity of this cancer type and to identify new prognostic and therapeutic markers. Thus, there arises a need for useful analytical tools to assist in the investigation and clinical management of the disease. We developed Cancer Target Gene Screening (CTGS), a web application that provides rapid and user-friendly analysis of multi-omics data sets from a large number of primary breast tumors. It allows the investigation of genomic and epigenomic aberrations, evaluation of transcriptomic profiles and performance of survival analyses and of bivariate correlations between layers of omics data. Notably, the genome-wide screening function of CTGS prioritizes candidate genes of clinical and biological significance among genes with copy number alteration, DNA methylation and dysregulated expression by the integrative analysis of different types of omics data in customized subgroups of breast cancer patients. These features may help in the identification of druggable cancer driver genes in a specific subtype or the clinical condition of human breast cancer. CTGS is available at http://ctgs.biohackers.net.</description><subject>Applications programs</subject><subject>Bivariate analysis</subject><subject>Breast cancer</subject><subject>Copy number</subject><subject>Correlation analysis</subject><subject>Data analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Subgroups</subject><subject>Tumors</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1LxDAQxYMoun5c_AMkIIIIdZMmbRNvsugqCB5cz2USp0ukXyYton-9WaoePHiZmcPvPYb3CDnm7JIzLebGmbkxn4yJLTLjsigSyTK5vbnzIslkLvbIfgivjKWsUHyX7AmWa5ULNSPvC2gteroCv8aBLrFF-mQ9Yuva9RUF-o6GQt_XzsLgupZWnafGI4SB2kk6TNL1Rhp-pHQMm9mM9eCSrnE20BcYgEIL9Udw4ZDsVFAHPPreB-T59ma1uEseHpf3i-uHxAqZDYmWAAyNwEoWSmhRFSJTusolaMWk4SZjFgzjlTGolcxMBUWap4zzXElplDgg55Nv77u3EcNQNi5YrGtosRtDmfJCZynPhYzo6R_0tRt9_DdSMtXRM-YXqYuJsr4LwWNV9t414D9KzspNHWWso5zqiPDJt-VoGnz5RX_yj8DZBHRj_5_RF3s_krs</recordid><startdate>20200323</startdate><enddate>20200323</enddate><creator>Kim, Hyung-Yong</creator><creator>Choi, Hee-Joo</creator><creator>Lee, Jeong-Yeon</creator><creator>Kong, Gu</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200323</creationdate><title>Cancer Target Gene Screening: a web application for breast cancer target gene screening using multi-omics data analysis</title><author>Kim, Hyung-Yong ; Choi, Hee-Joo ; Lee, Jeong-Yeon ; Kong, Gu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-94aa0eb3ef478393f73589f64a9804b1b50cab01fbbe9845bfa72620116844b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications programs</topic><topic>Bivariate analysis</topic><topic>Breast cancer</topic><topic>Copy number</topic><topic>Correlation analysis</topic><topic>Data analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Subgroups</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyung-Yong</creatorcontrib><creatorcontrib>Choi, Hee-Joo</creatorcontrib><creatorcontrib>Lee, Jeong-Yeon</creatorcontrib><creatorcontrib>Kong, Gu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Hyung-Yong</au><au>Choi, Hee-Joo</au><au>Lee, Jeong-Yeon</au><au>Kong, Gu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cancer Target Gene Screening: a web application for breast cancer target gene screening using multi-omics data analysis</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2020-03-23</date><risdate>2020</risdate><volume>21</volume><issue>2</issue><spage>663</spage><epage>675</epage><pages>663-675</pages><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Breast cancer comprises several molecular subtypes with distinct clinical features and treatment responses, and a substantial portion of each subtype remains incurable. A comprehensive analysis of multi-omics data and clinical profiles is required in order to better understand the biological complexity of this cancer type and to identify new prognostic and therapeutic markers. Thus, there arises a need for useful analytical tools to assist in the investigation and clinical management of the disease. We developed Cancer Target Gene Screening (CTGS), a web application that provides rapid and user-friendly analysis of multi-omics data sets from a large number of primary breast tumors. It allows the investigation of genomic and epigenomic aberrations, evaluation of transcriptomic profiles and performance of survival analyses and of bivariate correlations between layers of omics data. Notably, the genome-wide screening function of CTGS prioritizes candidate genes of clinical and biological significance among genes with copy number alteration, DNA methylation and dysregulated expression by the integrative analysis of different types of omics data in customized subgroups of breast cancer patients. These features may help in the identification of druggable cancer driver genes in a specific subtype or the clinical condition of human breast cancer. CTGS is available at http://ctgs.biohackers.net.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30698638</pmid><doi>10.1093/bib/bbz003</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2020-03, Vol.21 (2), p.663-675
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2179521634
source Oxford Journals Open Access Collection
subjects Applications programs
Bivariate analysis
Breast cancer
Copy number
Correlation analysis
Data analysis
Deoxyribonucleic acid
DNA
DNA methylation
Gene expression
Genes
Genomes
Subgroups
Tumors
title Cancer Target Gene Screening: a web application for breast cancer target gene screening using multi-omics data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cancer%20Target%20Gene%20Screening:%20a%20web%20application%20for%20breast%20cancer%20target%20gene%20screening%20using%20multi-omics%20data%20analysis&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Kim,%20Hyung-Yong&rft.date=2020-03-23&rft.volume=21&rft.issue=2&rft.spage=663&rft.epage=675&rft.pages=663-675&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbz003&rft_dat=%3Cproquest_TOX%3E2429011020%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429011020&rft_id=info:pmid/30698638&rft_oup_id=10.1093/bib/bbz003&rfr_iscdi=true