Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells

Carbon dots co-doped with nitrogen and sulfur (NSCDs) were obtained from thiourea and TAE (Tris-acetate-ethylenediamine) buffer using microwave assisted hydrothermal synthesis. The synergistic presence of nitrogen and sulfur as a dopant results in teasing fluorescence properties and a fluorescence q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2019-03, Vol.186 (3), p.157-157, Article 157
Hauptverfasser: Pathak, Abhishek, PV, Suneesh, Stanley, John, Satheesh Babu, T. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon dots co-doped with nitrogen and sulfur (NSCDs) were obtained from thiourea and TAE (Tris-acetate-ethylenediamine) buffer using microwave assisted hydrothermal synthesis. The synergistic presence of nitrogen and sulfur as a dopant results in teasing fluorescence properties and a fluorescence quantum yield of 57%. An HR-TEM study showed the NSCDs to be mono-dispersed and seemingly spherical with an average hydrodynamic diameter of 3.6 ± 0.88 nm. The NSCDs are nontoxic as proven by an MTT assay for cytotoxicity. The optical characterization was done by using UV-Vis absorption and fluorescence spectroscopy which revealed excitation wavelength-dependent multicolor emissions. The characterization of surface topology was done by using X-ray diffraction, FTIR, and X-ray photoelectron spectroscopy. The NSCDs were used to image various pathogenic bacteria (E. coli, Klebsiella, Pseudomonas & Staphylococcus ) and human buccal epithelial cells by applying multicolor fluorometry. Graphical abstract Schematic presentation of microwave-assisted hydrothermal synthesis of nitrogen and sulfur doped carbon dots (NSCD) based on Thiourea and 50X Tris-acetate-ethylenediamine (TAE) buffer having multicolor fluorescence, used for tagging and imaging pathogenic bacteria and Human buccal epithelial cells using fluorescence microscope.
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-019-3270-7