Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis
Key message Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2019-05, Vol.38 (5), p.587-596 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 5 |
container_start_page | 587 |
container_title | Plant cell reports |
container_volume | 38 |
creator | Liu, Jinyi Chu, Jinjin Ma, Chuangju Jiang, Yueting Ma, Yuanchun Xiong, Jinsong Cheng, Zong-Ming |
description | Key message
Overexpression of grapevine
VvABF2
gene could enhance osmotic stress tolerance in
Arabidopsis thaliana
but fully required for ABA signaling.
The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine (
Vitis vinifera
L.)
ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2
(
VvABF2
), a homologous gene of
AREB
/
ABFs
form
Arabidopsis
, was isolated and constitutively expressed in
Arabidopsis
under the control of the cauliflower mosaic virus 35S promoter. The
VvABF2
transgenic
Arabidopsis
plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of
VvABF2
in
Arabidopsis
significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that
VvABF2
has a similar function to the
Arabidopsis
homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine. |
doi_str_mv | 10.1007/s00299-019-02389-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179517213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174913710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b47c15b4872f01aa725d7ce9d5629a891cd17c374b814ed8e9f94b96bbc862703</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZfCC3BAlrhwaKjHTtbxcVtRqFSpPQBCXCzbmZRUu3bwZFfs2-OwBSQOPVg-zPd_Hvln7BWIdyCEPiMhpDGVgHKkak21f8IWUCtZSaG-PmULoSVUWkN9zJ4T3QtRhnr5jB0roUGCUAu2u9lhxp9jRqIhRZ567iJfna-qDkeMHcaJ32U34m6IyP23q1s-ZRcp5GGc5kDvwpTyKf-yW51fylOO8buLAYkn2qRpCJym2c2HYs3OD10aaaAX7Kh3a8KXD_cJ-3z5_tPFx-r65sPVxeq6Cko3U-VrHaDxdatlL8A5LZtOBzRds5TGtQZCB7qgtW-hxq5F05vam6X3oV1KLdQJe3vwjjn92CJNdjNQwPXaRUxbshK0aaB8kyrom__Q-7TNsWw3U7UBpWEWygMVciLK2NsxDxuX9xaEnVuxh1ZsacX-bsXuS-j1g3rrN9j9jfypoQDqAFAZxTvM_95-RPsLMWKYZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174913710</pqid></control><display><type>article</type><title>Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Jinyi ; Chu, Jinjin ; Ma, Chuangju ; Jiang, Yueting ; Ma, Yuanchun ; Xiong, Jinsong ; Cheng, Zong-Ming</creator><creatorcontrib>Liu, Jinyi ; Chu, Jinjin ; Ma, Chuangju ; Jiang, Yueting ; Ma, Yuanchun ; Xiong, Jinsong ; Cheng, Zong-Ming</creatorcontrib><description>Key message
Overexpression of grapevine
VvABF2
gene could enhance osmotic stress tolerance in
Arabidopsis thaliana
but fully required for ABA signaling.
The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine (
Vitis vinifera
L.)
ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2
(
VvABF2
), a homologous gene of
AREB
/
ABFs
form
Arabidopsis
, was isolated and constitutively expressed in
Arabidopsis
under the control of the cauliflower mosaic virus 35S promoter. The
VvABF2
transgenic
Arabidopsis
plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of
VvABF2
in
Arabidopsis
significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that
VvABF2
has a similar function to the
Arabidopsis
homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-019-02389-y</identifier><identifier>PMID: 30712103</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abscisic acid ; Abscisic Acid - metabolism ; Antioxidants ; Arabidopsis ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cell membranes ; Drought ; Gene expression ; Gene Expression Regulation, Plant ; Homology ; Life Sciences ; Original Article ; Osmosis ; Osmotic Pressure ; Osmotic stress ; Plant Biochemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Polyethylene glycol ; Scavenging ; Signaling ; Stresses ; Transgenic plants ; Viruses ; Vitis - genetics ; Vitis - metabolism</subject><ispartof>Plant cell reports, 2019-05, Vol.38 (5), p.587-596</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Plant Cell Reports is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b47c15b4872f01aa725d7ce9d5629a891cd17c374b814ed8e9f94b96bbc862703</citedby><cites>FETCH-LOGICAL-c375t-b47c15b4872f01aa725d7ce9d5629a891cd17c374b814ed8e9f94b96bbc862703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-019-02389-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-019-02389-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30712103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jinyi</creatorcontrib><creatorcontrib>Chu, Jinjin</creatorcontrib><creatorcontrib>Ma, Chuangju</creatorcontrib><creatorcontrib>Jiang, Yueting</creatorcontrib><creatorcontrib>Ma, Yuanchun</creatorcontrib><creatorcontrib>Xiong, Jinsong</creatorcontrib><creatorcontrib>Cheng, Zong-Ming</creatorcontrib><title>Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message
Overexpression of grapevine
VvABF2
gene could enhance osmotic stress tolerance in
Arabidopsis thaliana
but fully required for ABA signaling.
The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine (
Vitis vinifera
L.)
ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2
(
VvABF2
), a homologous gene of
AREB
/
ABFs
form
Arabidopsis
, was isolated and constitutively expressed in
Arabidopsis
under the control of the cauliflower mosaic virus 35S promoter. The
VvABF2
transgenic
Arabidopsis
plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of
VvABF2
in
Arabidopsis
significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that
VvABF2
has a similar function to the
Arabidopsis
homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Antioxidants</subject><subject>Arabidopsis</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cell membranes</subject><subject>Drought</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Homology</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Osmosis</subject><subject>Osmotic Pressure</subject><subject>Osmotic stress</subject><subject>Plant Biochemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Polyethylene glycol</subject><subject>Scavenging</subject><subject>Signaling</subject><subject>Stresses</subject><subject>Transgenic plants</subject><subject>Viruses</subject><subject>Vitis - genetics</subject><subject>Vitis - metabolism</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhi1ERZfCC3BAlrhwaKjHTtbxcVtRqFSpPQBCXCzbmZRUu3bwZFfs2-OwBSQOPVg-zPd_Hvln7BWIdyCEPiMhpDGVgHKkak21f8IWUCtZSaG-PmULoSVUWkN9zJ4T3QtRhnr5jB0roUGCUAu2u9lhxp9jRqIhRZ567iJfna-qDkeMHcaJ32U34m6IyP23q1s-ZRcp5GGc5kDvwpTyKf-yW51fylOO8buLAYkn2qRpCJym2c2HYs3OD10aaaAX7Kh3a8KXD_cJ-3z5_tPFx-r65sPVxeq6Cko3U-VrHaDxdatlL8A5LZtOBzRds5TGtQZCB7qgtW-hxq5F05vam6X3oV1KLdQJe3vwjjn92CJNdjNQwPXaRUxbshK0aaB8kyrom__Q-7TNsWw3U7UBpWEWygMVciLK2NsxDxuX9xaEnVuxh1ZsacX-bsXuS-j1g3rrN9j9jfypoQDqAFAZxTvM_95-RPsLMWKYZQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Liu, Jinyi</creator><creator>Chu, Jinjin</creator><creator>Ma, Chuangju</creator><creator>Jiang, Yueting</creator><creator>Ma, Yuanchun</creator><creator>Xiong, Jinsong</creator><creator>Cheng, Zong-Ming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190501</creationdate><title>Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis</title><author>Liu, Jinyi ; Chu, Jinjin ; Ma, Chuangju ; Jiang, Yueting ; Ma, Yuanchun ; Xiong, Jinsong ; Cheng, Zong-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b47c15b4872f01aa725d7ce9d5629a891cd17c374b814ed8e9f94b96bbc862703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Antioxidants</topic><topic>Arabidopsis</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cell membranes</topic><topic>Drought</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Homology</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Osmosis</topic><topic>Osmotic Pressure</topic><topic>Osmotic stress</topic><topic>Plant Biochemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Polyethylene glycol</topic><topic>Scavenging</topic><topic>Signaling</topic><topic>Stresses</topic><topic>Transgenic plants</topic><topic>Viruses</topic><topic>Vitis - genetics</topic><topic>Vitis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinyi</creatorcontrib><creatorcontrib>Chu, Jinjin</creatorcontrib><creatorcontrib>Ma, Chuangju</creatorcontrib><creatorcontrib>Jiang, Yueting</creatorcontrib><creatorcontrib>Ma, Yuanchun</creatorcontrib><creatorcontrib>Xiong, Jinsong</creatorcontrib><creatorcontrib>Cheng, Zong-Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jinyi</au><au>Chu, Jinjin</au><au>Ma, Chuangju</au><au>Jiang, Yueting</au><au>Ma, Yuanchun</au><au>Xiong, Jinsong</au><au>Cheng, Zong-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>38</volume><issue>5</issue><spage>587</spage><epage>596</epage><pages>587-596</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message
Overexpression of grapevine
VvABF2
gene could enhance osmotic stress tolerance in
Arabidopsis thaliana
but fully required for ABA signaling.
The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine (
Vitis vinifera
L.)
ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2
(
VvABF2
), a homologous gene of
AREB
/
ABFs
form
Arabidopsis
, was isolated and constitutively expressed in
Arabidopsis
under the control of the cauliflower mosaic virus 35S promoter. The
VvABF2
transgenic
Arabidopsis
plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of
VvABF2
in
Arabidopsis
significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that
VvABF2
has a similar function to the
Arabidopsis
homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30712103</pmid><doi>10.1007/s00299-019-02389-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-7714 |
ispartof | Plant cell reports, 2019-05, Vol.38 (5), p.587-596 |
issn | 0721-7714 1432-203X |
language | eng |
recordid | cdi_proquest_miscellaneous_2179517213 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Abscisic acid Abscisic Acid - metabolism Antioxidants Arabidopsis Basic-Leucine Zipper Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - metabolism Biomedical and Life Sciences Biotechnology Cell Biology Cell membranes Drought Gene expression Gene Expression Regulation, Plant Homology Life Sciences Original Article Osmosis Osmotic Pressure Osmotic stress Plant Biochemistry Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Polyethylene glycol Scavenging Signaling Stresses Transgenic plants Viruses Vitis - genetics Vitis - metabolism |
title | Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20an%20ABA-dependent%20grapevine%20bZIP%20transcription%20factor,%20VvABF2,%20enhances%20osmotic%20stress%20in%20Arabidopsis&rft.jtitle=Plant%20cell%20reports&rft.au=Liu,%20Jinyi&rft.date=2019-05-01&rft.volume=38&rft.issue=5&rft.spage=587&rft.epage=596&rft.pages=587-596&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-019-02389-y&rft_dat=%3Cproquest_cross%3E2174913710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174913710&rft_id=info:pmid/30712103&rfr_iscdi=true |