Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis

Key message Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell reports 2019-05, Vol.38 (5), p.587-596
Hauptverfasser: Liu, Jinyi, Chu, Jinjin, Ma, Chuangju, Jiang, Yueting, Ma, Yuanchun, Xiong, Jinsong, Cheng, Zong-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 5
container_start_page 587
container_title Plant cell reports
container_volume 38
creator Liu, Jinyi
Chu, Jinjin
Ma, Chuangju
Jiang, Yueting
Ma, Yuanchun
Xiong, Jinsong
Cheng, Zong-Ming
description Key message Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine ( Vitis vinifera L.) ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 ( VvABF2 ), a homologous gene of AREB / ABFs form Arabidopsis , was isolated and constitutively expressed in Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. The VvABF2 transgenic Arabidopsis plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of VvABF2 in Arabidopsis significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that VvABF2 has a similar function to the Arabidopsis homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.
doi_str_mv 10.1007/s00299-019-02389-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179517213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174913710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-b47c15b4872f01aa725d7ce9d5629a891cd17c374b814ed8e9f94b96bbc862703</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZfCC3BAlrhwaKjHTtbxcVtRqFSpPQBCXCzbmZRUu3bwZFfs2-OwBSQOPVg-zPd_Hvln7BWIdyCEPiMhpDGVgHKkak21f8IWUCtZSaG-PmULoSVUWkN9zJ4T3QtRhnr5jB0roUGCUAu2u9lhxp9jRqIhRZ567iJfna-qDkeMHcaJ32U34m6IyP23q1s-ZRcp5GGc5kDvwpTyKf-yW51fylOO8buLAYkn2qRpCJym2c2HYs3OD10aaaAX7Kh3a8KXD_cJ-3z5_tPFx-r65sPVxeq6Cko3U-VrHaDxdatlL8A5LZtOBzRds5TGtQZCB7qgtW-hxq5F05vam6X3oV1KLdQJe3vwjjn92CJNdjNQwPXaRUxbshK0aaB8kyrom__Q-7TNsWw3U7UBpWEWygMVciLK2NsxDxuX9xaEnVuxh1ZsacX-bsXuS-j1g3rrN9j9jfypoQDqAFAZxTvM_95-RPsLMWKYZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174913710</pqid></control><display><type>article</type><title>Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Jinyi ; Chu, Jinjin ; Ma, Chuangju ; Jiang, Yueting ; Ma, Yuanchun ; Xiong, Jinsong ; Cheng, Zong-Ming</creator><creatorcontrib>Liu, Jinyi ; Chu, Jinjin ; Ma, Chuangju ; Jiang, Yueting ; Ma, Yuanchun ; Xiong, Jinsong ; Cheng, Zong-Ming</creatorcontrib><description>Key message Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine ( Vitis vinifera L.) ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 ( VvABF2 ), a homologous gene of AREB / ABFs form Arabidopsis , was isolated and constitutively expressed in Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. The VvABF2 transgenic Arabidopsis plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of VvABF2 in Arabidopsis significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that VvABF2 has a similar function to the Arabidopsis homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.</description><identifier>ISSN: 0721-7714</identifier><identifier>EISSN: 1432-203X</identifier><identifier>DOI: 10.1007/s00299-019-02389-y</identifier><identifier>PMID: 30712103</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abscisic acid ; Abscisic Acid - metabolism ; Antioxidants ; Arabidopsis ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cell membranes ; Drought ; Gene expression ; Gene Expression Regulation, Plant ; Homology ; Life Sciences ; Original Article ; Osmosis ; Osmotic Pressure ; Osmotic stress ; Plant Biochemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Polyethylene glycol ; Scavenging ; Signaling ; Stresses ; Transgenic plants ; Viruses ; Vitis - genetics ; Vitis - metabolism</subject><ispartof>Plant cell reports, 2019-05, Vol.38 (5), p.587-596</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Plant Cell Reports is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-b47c15b4872f01aa725d7ce9d5629a891cd17c374b814ed8e9f94b96bbc862703</citedby><cites>FETCH-LOGICAL-c375t-b47c15b4872f01aa725d7ce9d5629a891cd17c374b814ed8e9f94b96bbc862703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00299-019-02389-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00299-019-02389-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30712103$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jinyi</creatorcontrib><creatorcontrib>Chu, Jinjin</creatorcontrib><creatorcontrib>Ma, Chuangju</creatorcontrib><creatorcontrib>Jiang, Yueting</creatorcontrib><creatorcontrib>Ma, Yuanchun</creatorcontrib><creatorcontrib>Xiong, Jinsong</creatorcontrib><creatorcontrib>Cheng, Zong-Ming</creatorcontrib><title>Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis</title><title>Plant cell reports</title><addtitle>Plant Cell Rep</addtitle><addtitle>Plant Cell Rep</addtitle><description>Key message Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine ( Vitis vinifera L.) ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 ( VvABF2 ), a homologous gene of AREB / ABFs form Arabidopsis , was isolated and constitutively expressed in Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. The VvABF2 transgenic Arabidopsis plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of VvABF2 in Arabidopsis significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that VvABF2 has a similar function to the Arabidopsis homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.</description><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Antioxidants</subject><subject>Arabidopsis</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cell membranes</subject><subject>Drought</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Homology</subject><subject>Life Sciences</subject><subject>Original Article</subject><subject>Osmosis</subject><subject>Osmotic Pressure</subject><subject>Osmotic stress</subject><subject>Plant Biochemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Polyethylene glycol</subject><subject>Scavenging</subject><subject>Signaling</subject><subject>Stresses</subject><subject>Transgenic plants</subject><subject>Viruses</subject><subject>Vitis - genetics</subject><subject>Vitis - metabolism</subject><issn>0721-7714</issn><issn>1432-203X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhi1ERZfCC3BAlrhwaKjHTtbxcVtRqFSpPQBCXCzbmZRUu3bwZFfs2-OwBSQOPVg-zPd_Hvln7BWIdyCEPiMhpDGVgHKkak21f8IWUCtZSaG-PmULoSVUWkN9zJ4T3QtRhnr5jB0roUGCUAu2u9lhxp9jRqIhRZ567iJfna-qDkeMHcaJ32U34m6IyP23q1s-ZRcp5GGc5kDvwpTyKf-yW51fylOO8buLAYkn2qRpCJym2c2HYs3OD10aaaAX7Kh3a8KXD_cJ-3z5_tPFx-r65sPVxeq6Cko3U-VrHaDxdatlL8A5LZtOBzRds5TGtQZCB7qgtW-hxq5F05vam6X3oV1KLdQJe3vwjjn92CJNdjNQwPXaRUxbshK0aaB8kyrom__Q-7TNsWw3U7UBpWEWygMVciLK2NsxDxuX9xaEnVuxh1ZsacX-bsXuS-j1g3rrN9j9jfypoQDqAFAZxTvM_95-RPsLMWKYZQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Liu, Jinyi</creator><creator>Chu, Jinjin</creator><creator>Ma, Chuangju</creator><creator>Jiang, Yueting</creator><creator>Ma, Yuanchun</creator><creator>Xiong, Jinsong</creator><creator>Cheng, Zong-Ming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190501</creationdate><title>Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis</title><author>Liu, Jinyi ; Chu, Jinjin ; Ma, Chuangju ; Jiang, Yueting ; Ma, Yuanchun ; Xiong, Jinsong ; Cheng, Zong-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-b47c15b4872f01aa725d7ce9d5629a891cd17c374b814ed8e9f94b96bbc862703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Antioxidants</topic><topic>Arabidopsis</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cell membranes</topic><topic>Drought</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Homology</topic><topic>Life Sciences</topic><topic>Original Article</topic><topic>Osmosis</topic><topic>Osmotic Pressure</topic><topic>Osmotic stress</topic><topic>Plant Biochemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Polyethylene glycol</topic><topic>Scavenging</topic><topic>Signaling</topic><topic>Stresses</topic><topic>Transgenic plants</topic><topic>Viruses</topic><topic>Vitis - genetics</topic><topic>Vitis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinyi</creatorcontrib><creatorcontrib>Chu, Jinjin</creatorcontrib><creatorcontrib>Ma, Chuangju</creatorcontrib><creatorcontrib>Jiang, Yueting</creatorcontrib><creatorcontrib>Ma, Yuanchun</creatorcontrib><creatorcontrib>Xiong, Jinsong</creatorcontrib><creatorcontrib>Cheng, Zong-Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jinyi</au><au>Chu, Jinjin</au><au>Ma, Chuangju</au><au>Jiang, Yueting</au><au>Ma, Yuanchun</au><au>Xiong, Jinsong</au><au>Cheng, Zong-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis</atitle><jtitle>Plant cell reports</jtitle><stitle>Plant Cell Rep</stitle><addtitle>Plant Cell Rep</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>38</volume><issue>5</issue><spage>587</spage><epage>596</epage><pages>587-596</pages><issn>0721-7714</issn><eissn>1432-203X</eissn><abstract>Key message Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling. The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine ( Vitis vinifera L.) ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 ( VvABF2 ), a homologous gene of AREB / ABFs form Arabidopsis , was isolated and constitutively expressed in Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. The VvABF2 transgenic Arabidopsis plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of VvABF2 in Arabidopsis significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that VvABF2 has a similar function to the Arabidopsis homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30712103</pmid><doi>10.1007/s00299-019-02389-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0721-7714
ispartof Plant cell reports, 2019-05, Vol.38 (5), p.587-596
issn 0721-7714
1432-203X
language eng
recordid cdi_proquest_miscellaneous_2179517213
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Abscisic acid
Abscisic Acid - metabolism
Antioxidants
Arabidopsis
Basic-Leucine Zipper Transcription Factors - genetics
Basic-Leucine Zipper Transcription Factors - metabolism
Biomedical and Life Sciences
Biotechnology
Cell Biology
Cell membranes
Drought
Gene expression
Gene Expression Regulation, Plant
Homology
Life Sciences
Original Article
Osmosis
Osmotic Pressure
Osmotic stress
Plant Biochemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Sciences
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Polyethylene glycol
Scavenging
Signaling
Stresses
Transgenic plants
Viruses
Vitis - genetics
Vitis - metabolism
title Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20an%20ABA-dependent%20grapevine%20bZIP%20transcription%20factor,%20VvABF2,%20enhances%20osmotic%20stress%20in%20Arabidopsis&rft.jtitle=Plant%20cell%20reports&rft.au=Liu,%20Jinyi&rft.date=2019-05-01&rft.volume=38&rft.issue=5&rft.spage=587&rft.epage=596&rft.pages=587-596&rft.issn=0721-7714&rft.eissn=1432-203X&rft_id=info:doi/10.1007/s00299-019-02389-y&rft_dat=%3Cproquest_cross%3E2174913710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174913710&rft_id=info:pmid/30712103&rfr_iscdi=true