Micrography QR Codes

This paper presents a novel algorithm to generate micrography QR codes , a novel machine-readable graphic generated by embedding a QR code within a micrography image. The unique structure of micrography makes it incompatible with existing methods used to combine QR codes with natural or halftone ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2020-09, Vol.26 (9), p.2834-2847
Hauptverfasser: Hung, Shih-Hsuan, Yao, Chih-Yuan, Fang, Yu-Jen, Tan, Ping, Lee, Ruen-Rone, Sheffer, Alla, Chu, Hung-Kuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2847
container_issue 9
container_start_page 2834
container_title IEEE transactions on visualization and computer graphics
container_volume 26
creator Hung, Shih-Hsuan
Yao, Chih-Yuan
Fang, Yu-Jen
Tan, Ping
Lee, Ruen-Rone
Sheffer, Alla
Chu, Hung-Kuo
description This paper presents a novel algorithm to generate micrography QR codes , a novel machine-readable graphic generated by embedding a QR code within a micrography image. The unique structure of micrography makes it incompatible with existing methods used to combine QR codes with natural or halftone images. We exploited the high-frequency nature of micrography in the design of a novel deformation model that enables the skillful warping of individual letters and adjustment of font weights to enable the embedding of a QR code within a micrography. The entire process is supervised by a set of visual quality metrics tailored specifically for micrography, in conjunction with a novel QR code quality measure aimed at striking a balance between visual fidelity and decoding robustness. The proposed QR code quality measure is based on probabilistic models learned from decoding experiments using popular decoders with synthetic QR codes to capture the various forms of distortion that result from image embedding. Experiment results demonstrate the efficacy of the proposed method in generating micrography QR codes of high quality from a wide variety of inputs. The ability to embed QR codes with multiple scales makes it possible to produce a wide range of diverse designs. Experiments and user studies were conducted to evaluate the proposed method from a qualitative as well as quantitative perspective.
doi_str_mv 10.1109/TVCG.2019.2896895
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179508082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8632711</ieee_id><sourcerecordid>2429225297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-25b8de72e9c014326cf0817701e9146bc206bc1adb3a81380449f43ff410de913</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoVqs3LyJIwYuXrTOTbD6OsmgVKqJUr2E_srql7dake-i_N6W1By9JIM_7MvMwdokwRARzN_nMRkMCNEPSRmqTHrATNAITSEEexjcolZAk2WOnIUwBUAhtjlmPg0IJXJ-wi5em9O2Xz5ff68Hb-yBrKxfO2FGdz4I739199vH4MMmekvHr6Dm7HyclF2aVUFroyilypozNnGRZg0alAJ1BIYuSIB6YVwXPNXINQpha8LoWCFVEeJ_dbnuXvv3pXFjZeRNKN5vlC9d2wRIqk4IGTRG9-YdO284v4nSWBBmilIyKFG6puFMI3tV26Zt57tcWwW6U2Y0yu1Fmd8pi5nrX3BVzV-0Tf44icLUFGufc_ltLTgqR_wLMI2tt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429225297</pqid></control><display><type>article</type><title>Micrography QR Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Hung, Shih-Hsuan ; Yao, Chih-Yuan ; Fang, Yu-Jen ; Tan, Ping ; Lee, Ruen-Rone ; Sheffer, Alla ; Chu, Hung-Kuo</creator><creatorcontrib>Hung, Shih-Hsuan ; Yao, Chih-Yuan ; Fang, Yu-Jen ; Tan, Ping ; Lee, Ruen-Rone ; Sheffer, Alla ; Chu, Hung-Kuo</creatorcontrib><description>This paper presents a novel algorithm to generate micrography QR codes , a novel machine-readable graphic generated by embedding a QR code within a micrography image. The unique structure of micrography makes it incompatible with existing methods used to combine QR codes with natural or halftone images. We exploited the high-frequency nature of micrography in the design of a novel deformation model that enables the skillful warping of individual letters and adjustment of font weights to enable the embedding of a QR code within a micrography. The entire process is supervised by a set of visual quality metrics tailored specifically for micrography, in conjunction with a novel QR code quality measure aimed at striking a balance between visual fidelity and decoding robustness. The proposed QR code quality measure is based on probabilistic models learned from decoding experiments using popular decoders with synthetic QR codes to capture the various forms of distortion that result from image embedding. Experiment results demonstrate the efficacy of the proposed method in generating micrography QR codes of high quality from a wide variety of inputs. The ability to embed QR codes with multiple scales makes it possible to produce a wide range of diverse designs. Experiments and user studies were conducted to evaluate the proposed method from a qualitative as well as quantitative perspective.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2896895</identifier><identifier>PMID: 30716038</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Codes ; Decoders ; Decoding ; Distortion ; Distortion measurement ; Embedding ; Encoding ; image warping ; Micrography ; Optimization ; Probabilistic models ; QR code ; Strain ; typography ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2020-09, Vol.26 (9), p.2834-2847</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-25b8de72e9c014326cf0817701e9146bc206bc1adb3a81380449f43ff410de913</citedby><cites>FETCH-LOGICAL-c349t-25b8de72e9c014326cf0817701e9146bc206bc1adb3a81380449f43ff410de913</cites><orcidid>0000-0002-6435-9464 ; 0000-0002-0368-3973 ; 0000-0002-4506-6973 ; 0000-0003-4487-8483 ; 0000-0001-6608-7178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8632711$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8632711$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30716038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hung, Shih-Hsuan</creatorcontrib><creatorcontrib>Yao, Chih-Yuan</creatorcontrib><creatorcontrib>Fang, Yu-Jen</creatorcontrib><creatorcontrib>Tan, Ping</creatorcontrib><creatorcontrib>Lee, Ruen-Rone</creatorcontrib><creatorcontrib>Sheffer, Alla</creatorcontrib><creatorcontrib>Chu, Hung-Kuo</creatorcontrib><title>Micrography QR Codes</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>This paper presents a novel algorithm to generate micrography QR codes , a novel machine-readable graphic generated by embedding a QR code within a micrography image. The unique structure of micrography makes it incompatible with existing methods used to combine QR codes with natural or halftone images. We exploited the high-frequency nature of micrography in the design of a novel deformation model that enables the skillful warping of individual letters and adjustment of font weights to enable the embedding of a QR code within a micrography. The entire process is supervised by a set of visual quality metrics tailored specifically for micrography, in conjunction with a novel QR code quality measure aimed at striking a balance between visual fidelity and decoding robustness. The proposed QR code quality measure is based on probabilistic models learned from decoding experiments using popular decoders with synthetic QR codes to capture the various forms of distortion that result from image embedding. Experiment results demonstrate the efficacy of the proposed method in generating micrography QR codes of high quality from a wide variety of inputs. The ability to embed QR codes with multiple scales makes it possible to produce a wide range of diverse designs. Experiments and user studies were conducted to evaluate the proposed method from a qualitative as well as quantitative perspective.</description><subject>Algorithms</subject><subject>Codes</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Distortion</subject><subject>Distortion measurement</subject><subject>Embedding</subject><subject>Encoding</subject><subject>image warping</subject><subject>Micrography</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>QR code</subject><subject>Strain</subject><subject>typography</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoVqs3LyJIwYuXrTOTbD6OsmgVKqJUr2E_srql7dake-i_N6W1By9JIM_7MvMwdokwRARzN_nMRkMCNEPSRmqTHrATNAITSEEexjcolZAk2WOnIUwBUAhtjlmPg0IJXJ-wi5em9O2Xz5ff68Hb-yBrKxfO2FGdz4I739199vH4MMmekvHr6Dm7HyclF2aVUFroyilypozNnGRZg0alAJ1BIYuSIB6YVwXPNXINQpha8LoWCFVEeJ_dbnuXvv3pXFjZeRNKN5vlC9d2wRIqk4IGTRG9-YdO284v4nSWBBmilIyKFG6puFMI3tV26Zt57tcWwW6U2Y0yu1Fmd8pi5nrX3BVzV-0Tf44icLUFGufc_ltLTgqR_wLMI2tt</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Hung, Shih-Hsuan</creator><creator>Yao, Chih-Yuan</creator><creator>Fang, Yu-Jen</creator><creator>Tan, Ping</creator><creator>Lee, Ruen-Rone</creator><creator>Sheffer, Alla</creator><creator>Chu, Hung-Kuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6435-9464</orcidid><orcidid>https://orcid.org/0000-0002-0368-3973</orcidid><orcidid>https://orcid.org/0000-0002-4506-6973</orcidid><orcidid>https://orcid.org/0000-0003-4487-8483</orcidid><orcidid>https://orcid.org/0000-0001-6608-7178</orcidid></search><sort><creationdate>20200901</creationdate><title>Micrography QR Codes</title><author>Hung, Shih-Hsuan ; Yao, Chih-Yuan ; Fang, Yu-Jen ; Tan, Ping ; Lee, Ruen-Rone ; Sheffer, Alla ; Chu, Hung-Kuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-25b8de72e9c014326cf0817701e9146bc206bc1adb3a81380449f43ff410de913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Codes</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Distortion</topic><topic>Distortion measurement</topic><topic>Embedding</topic><topic>Encoding</topic><topic>image warping</topic><topic>Micrography</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>QR code</topic><topic>Strain</topic><topic>typography</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Shih-Hsuan</creatorcontrib><creatorcontrib>Yao, Chih-Yuan</creatorcontrib><creatorcontrib>Fang, Yu-Jen</creatorcontrib><creatorcontrib>Tan, Ping</creatorcontrib><creatorcontrib>Lee, Ruen-Rone</creatorcontrib><creatorcontrib>Sheffer, Alla</creatorcontrib><creatorcontrib>Chu, Hung-Kuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hung, Shih-Hsuan</au><au>Yao, Chih-Yuan</au><au>Fang, Yu-Jen</au><au>Tan, Ping</au><au>Lee, Ruen-Rone</au><au>Sheffer, Alla</au><au>Chu, Hung-Kuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micrography QR Codes</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>26</volume><issue>9</issue><spage>2834</spage><epage>2847</epage><pages>2834-2847</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>This paper presents a novel algorithm to generate micrography QR codes , a novel machine-readable graphic generated by embedding a QR code within a micrography image. The unique structure of micrography makes it incompatible with existing methods used to combine QR codes with natural or halftone images. We exploited the high-frequency nature of micrography in the design of a novel deformation model that enables the skillful warping of individual letters and adjustment of font weights to enable the embedding of a QR code within a micrography. The entire process is supervised by a set of visual quality metrics tailored specifically for micrography, in conjunction with a novel QR code quality measure aimed at striking a balance between visual fidelity and decoding robustness. The proposed QR code quality measure is based on probabilistic models learned from decoding experiments using popular decoders with synthetic QR codes to capture the various forms of distortion that result from image embedding. Experiment results demonstrate the efficacy of the proposed method in generating micrography QR codes of high quality from a wide variety of inputs. The ability to embed QR codes with multiple scales makes it possible to produce a wide range of diverse designs. Experiments and user studies were conducted to evaluate the proposed method from a qualitative as well as quantitative perspective.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30716038</pmid><doi>10.1109/TVCG.2019.2896895</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6435-9464</orcidid><orcidid>https://orcid.org/0000-0002-0368-3973</orcidid><orcidid>https://orcid.org/0000-0002-4506-6973</orcidid><orcidid>https://orcid.org/0000-0003-4487-8483</orcidid><orcidid>https://orcid.org/0000-0001-6608-7178</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2020-09, Vol.26 (9), p.2834-2847
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_2179508082
source IEEE Electronic Library (IEL)
subjects Algorithms
Codes
Decoders
Decoding
Distortion
Distortion measurement
Embedding
Encoding
image warping
Micrography
Optimization
Probabilistic models
QR code
Strain
typography
Visualization
title Micrography QR Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micrography%20QR%20Codes&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Hung,%20Shih-Hsuan&rft.date=2020-09-01&rft.volume=26&rft.issue=9&rft.spage=2834&rft.epage=2847&rft.pages=2834-2847&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2896895&rft_dat=%3Cproquest_RIE%3E2429225297%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429225297&rft_id=info:pmid/30716038&rft_ieee_id=8632711&rfr_iscdi=true