Automated Fractured Bone Segmentation and Labeling from CT Images

Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical systems 2019-03, Vol.43 (3), p.60-13, Article 60
Hauptverfasser: Ruikar, Darshan D., Santosh, K. C., Hegadi, Ravindra S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 3
container_start_page 60
container_title Journal of medical systems
container_volume 43
creator Ruikar, Darshan D.
Santosh, K. C.
Hegadi, Ravindra S.
description Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.
doi_str_mv 10.1007/s10916-019-1176-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179507719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179507719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4bb2eea909f75b18b0db99ea5a6088f72445736073d6cbc123850d6c9c7869d93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuX6KQf-Tiui6vCggdX8BbSNi1dtsmatLD-e1O6KgieMpBn3pl5ELokcEsA2J0nIAjFQAQmhFG8P0JTkrEEUy7ej9EUSMpxlgk-QWfebwBAUMpO0SQBRiAmbIrm876zrep0GS2dKrrehereGh296rrVplNdY02kTBmtVK63jamjytk2Wqyj51bV2p-jk0ptvb44vDP0tnxYL57w6uXxeTFf4SJhcYfTPI-1VgJExbKc8BzKXAitMkWB84rFaRo2p8CSkhZ5QeKEZxBKUTBORSmSGboZc3fOfvTad7JtfKG3W2W07b0M54gMGCMDev0H3djembDdQKWUhvtZoMhIFc5673Qld65plfuUBOTgV45-ZfArB79yH3quDsl93uryp-NbaADiEfDhy9Ta_Y7-P_ULysqD7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174663077</pqid></control><display><type>article</type><title>Automated Fractured Bone Segmentation and Labeling from CT Images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ruikar, Darshan D. ; Santosh, K. C. ; Hegadi, Ravindra S.</creator><creatorcontrib>Ruikar, Darshan D. ; Santosh, K. C. ; Hegadi, Ravindra S.</creatorcontrib><description>Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-019-1176-x</identifier><identifier>PMID: 30710217</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automation ; Bones ; Computed tomography ; Computer simulation ; Fractures ; Health Informatics ; Health Sciences ; Image &amp; Signal Processing ; Image processing ; Image segmentation ; Injury analysis ; Labeling ; Labels ; Medical imaging ; Medical personnel ; Medicine ; Medicine &amp; Public Health ; Physicians ; Recovery plans ; State of the art ; Statistics for Life Sciences ; Surgery ; Tomography ; Trauma ; Visualization</subject><ispartof>Journal of medical systems, 2019-03, Vol.43 (3), p.60-13, Article 60</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4bb2eea909f75b18b0db99ea5a6088f72445736073d6cbc123850d6c9c7869d93</citedby><cites>FETCH-LOGICAL-c372t-4bb2eea909f75b18b0db99ea5a6088f72445736073d6cbc123850d6c9c7869d93</cites><orcidid>0000-0003-4176-0236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10916-019-1176-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10916-019-1176-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30710217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruikar, Darshan D.</creatorcontrib><creatorcontrib>Santosh, K. C.</creatorcontrib><creatorcontrib>Hegadi, Ravindra S.</creatorcontrib><title>Automated Fractured Bone Segmentation and Labeling from CT Images</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.</description><subject>Automation</subject><subject>Bones</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Fractures</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Image &amp; Signal Processing</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Injury analysis</subject><subject>Labeling</subject><subject>Labels</subject><subject>Medical imaging</subject><subject>Medical personnel</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Physicians</subject><subject>Recovery plans</subject><subject>State of the art</subject><subject>Statistics for Life Sciences</subject><subject>Surgery</subject><subject>Tomography</subject><subject>Trauma</subject><subject>Visualization</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuX6KQf-Tiui6vCggdX8BbSNi1dtsmatLD-e1O6KgieMpBn3pl5ELokcEsA2J0nIAjFQAQmhFG8P0JTkrEEUy7ej9EUSMpxlgk-QWfebwBAUMpO0SQBRiAmbIrm876zrep0GS2dKrrehereGh296rrVplNdY02kTBmtVK63jamjytk2Wqyj51bV2p-jk0ptvb44vDP0tnxYL57w6uXxeTFf4SJhcYfTPI-1VgJExbKc8BzKXAitMkWB84rFaRo2p8CSkhZ5QeKEZxBKUTBORSmSGboZc3fOfvTad7JtfKG3W2W07b0M54gMGCMDev0H3djembDdQKWUhvtZoMhIFc5673Qld65plfuUBOTgV45-ZfArB79yH3quDsl93uryp-NbaADiEfDhy9Ta_Y7-P_ULysqD7A</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Ruikar, Darshan D.</creator><creator>Santosh, K. C.</creator><creator>Hegadi, Ravindra S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4176-0236</orcidid></search><sort><creationdate>20190301</creationdate><title>Automated Fractured Bone Segmentation and Labeling from CT Images</title><author>Ruikar, Darshan D. ; Santosh, K. C. ; Hegadi, Ravindra S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4bb2eea909f75b18b0db99ea5a6088f72445736073d6cbc123850d6c9c7869d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automation</topic><topic>Bones</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Fractures</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Image &amp; Signal Processing</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Injury analysis</topic><topic>Labeling</topic><topic>Labels</topic><topic>Medical imaging</topic><topic>Medical personnel</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Physicians</topic><topic>Recovery plans</topic><topic>State of the art</topic><topic>Statistics for Life Sciences</topic><topic>Surgery</topic><topic>Tomography</topic><topic>Trauma</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruikar, Darshan D.</creatorcontrib><creatorcontrib>Santosh, K. C.</creatorcontrib><creatorcontrib>Hegadi, Ravindra S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruikar, Darshan D.</au><au>Santosh, K. C.</au><au>Hegadi, Ravindra S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Fractured Bone Segmentation and Labeling from CT Images</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>43</volume><issue>3</issue><spage>60</spage><epage>13</epage><pages>60-13</pages><artnum>60</artnum><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30710217</pmid><doi>10.1007/s10916-019-1176-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4176-0236</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0148-5598
ispartof Journal of medical systems, 2019-03, Vol.43 (3), p.60-13, Article 60
issn 0148-5598
1573-689X
language eng
recordid cdi_proquest_miscellaneous_2179507719
source SpringerLink Journals - AutoHoldings
subjects Automation
Bones
Computed tomography
Computer simulation
Fractures
Health Informatics
Health Sciences
Image & Signal Processing
Image processing
Image segmentation
Injury analysis
Labeling
Labels
Medical imaging
Medical personnel
Medicine
Medicine & Public Health
Physicians
Recovery plans
State of the art
Statistics for Life Sciences
Surgery
Tomography
Trauma
Visualization
title Automated Fractured Bone Segmentation and Labeling from CT Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Fractured%20Bone%20Segmentation%20and%20Labeling%20from%20CT%20Images&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Ruikar,%20Darshan%20D.&rft.date=2019-03-01&rft.volume=43&rft.issue=3&rft.spage=60&rft.epage=13&rft.pages=60-13&rft.artnum=60&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-019-1176-x&rft_dat=%3Cproquest_cross%3E2179507719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174663077&rft_id=info:pmid/30710217&rfr_iscdi=true