Automated Fractured Bone Segmentation and Labeling from CT Images
Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians...
Gespeichert in:
Veröffentlicht in: | Journal of medical systems 2019-03, Vol.43 (3), p.60-13, Article 60 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 3 |
container_start_page | 60 |
container_title | Journal of medical systems |
container_volume | 43 |
creator | Ruikar, Darshan D. Santosh, K. C. Hegadi, Ravindra S. |
description | Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request. |
doi_str_mv | 10.1007/s10916-019-1176-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179507719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179507719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4bb2eea909f75b18b0db99ea5a6088f72445736073d6cbc123850d6c9c7869d93</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuX6KQf-Tiui6vCggdX8BbSNi1dtsmatLD-e1O6KgieMpBn3pl5ELokcEsA2J0nIAjFQAQmhFG8P0JTkrEEUy7ej9EUSMpxlgk-QWfebwBAUMpO0SQBRiAmbIrm876zrep0GS2dKrrehereGh296rrVplNdY02kTBmtVK63jamjytk2Wqyj51bV2p-jk0ptvb44vDP0tnxYL57w6uXxeTFf4SJhcYfTPI-1VgJExbKc8BzKXAitMkWB84rFaRo2p8CSkhZ5QeKEZxBKUTBORSmSGboZc3fOfvTad7JtfKG3W2W07b0M54gMGCMDev0H3djembDdQKWUhvtZoMhIFc5673Qld65plfuUBOTgV45-ZfArB79yH3quDsl93uryp-NbaADiEfDhy9Ta_Y7-P_ULysqD7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174663077</pqid></control><display><type>article</type><title>Automated Fractured Bone Segmentation and Labeling from CT Images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ruikar, Darshan D. ; Santosh, K. C. ; Hegadi, Ravindra S.</creator><creatorcontrib>Ruikar, Darshan D. ; Santosh, K. C. ; Hegadi, Ravindra S.</creatorcontrib><description>Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-019-1176-x</identifier><identifier>PMID: 30710217</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automation ; Bones ; Computed tomography ; Computer simulation ; Fractures ; Health Informatics ; Health Sciences ; Image & Signal Processing ; Image processing ; Image segmentation ; Injury analysis ; Labeling ; Labels ; Medical imaging ; Medical personnel ; Medicine ; Medicine & Public Health ; Physicians ; Recovery plans ; State of the art ; Statistics for Life Sciences ; Surgery ; Tomography ; Trauma ; Visualization</subject><ispartof>Journal of medical systems, 2019-03, Vol.43 (3), p.60-13, Article 60</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4bb2eea909f75b18b0db99ea5a6088f72445736073d6cbc123850d6c9c7869d93</citedby><cites>FETCH-LOGICAL-c372t-4bb2eea909f75b18b0db99ea5a6088f72445736073d6cbc123850d6c9c7869d93</cites><orcidid>0000-0003-4176-0236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10916-019-1176-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10916-019-1176-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30710217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruikar, Darshan D.</creatorcontrib><creatorcontrib>Santosh, K. C.</creatorcontrib><creatorcontrib>Hegadi, Ravindra S.</creatorcontrib><title>Automated Fractured Bone Segmentation and Labeling from CT Images</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.</description><subject>Automation</subject><subject>Bones</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Fractures</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Image & Signal Processing</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Injury analysis</subject><subject>Labeling</subject><subject>Labels</subject><subject>Medical imaging</subject><subject>Medical personnel</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Physicians</subject><subject>Recovery plans</subject><subject>State of the art</subject><subject>Statistics for Life Sciences</subject><subject>Surgery</subject><subject>Tomography</subject><subject>Trauma</subject><subject>Visualization</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMo7rr6A7xIwYuX6KQf-Tiui6vCggdX8BbSNi1dtsmatLD-e1O6KgieMpBn3pl5ELokcEsA2J0nIAjFQAQmhFG8P0JTkrEEUy7ej9EUSMpxlgk-QWfebwBAUMpO0SQBRiAmbIrm876zrep0GS2dKrrehereGh296rrVplNdY02kTBmtVK63jamjytk2Wqyj51bV2p-jk0ptvb44vDP0tnxYL57w6uXxeTFf4SJhcYfTPI-1VgJExbKc8BzKXAitMkWB84rFaRo2p8CSkhZ5QeKEZxBKUTBORSmSGboZc3fOfvTad7JtfKG3W2W07b0M54gMGCMDev0H3djembDdQKWUhvtZoMhIFc5673Qld65plfuUBOTgV45-ZfArB79yH3quDsl93uryp-NbaADiEfDhy9Ta_Y7-P_ULysqD7A</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Ruikar, Darshan D.</creator><creator>Santosh, K. C.</creator><creator>Hegadi, Ravindra S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4176-0236</orcidid></search><sort><creationdate>20190301</creationdate><title>Automated Fractured Bone Segmentation and Labeling from CT Images</title><author>Ruikar, Darshan D. ; Santosh, K. C. ; Hegadi, Ravindra S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4bb2eea909f75b18b0db99ea5a6088f72445736073d6cbc123850d6c9c7869d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automation</topic><topic>Bones</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Fractures</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Image & Signal Processing</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Injury analysis</topic><topic>Labeling</topic><topic>Labels</topic><topic>Medical imaging</topic><topic>Medical personnel</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Physicians</topic><topic>Recovery plans</topic><topic>State of the art</topic><topic>Statistics for Life Sciences</topic><topic>Surgery</topic><topic>Tomography</topic><topic>Trauma</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruikar, Darshan D.</creatorcontrib><creatorcontrib>Santosh, K. C.</creatorcontrib><creatorcontrib>Hegadi, Ravindra S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruikar, Darshan D.</au><au>Santosh, K. C.</au><au>Hegadi, Ravindra S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Fractured Bone Segmentation and Labeling from CT Images</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>43</volume><issue>3</issue><spage>60</spage><epage>13</epage><pages>60-13</pages><artnum>60</artnum><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>Within the scope of education and training, automatic and accurate segmentation of fractured bones from Computed Tomographic (CT) images is the fundamental step in several different applications, such as trauma analysis, visualization, diagnosis, surgical planning and simulation. It helps physicians analyze the severity of injury by taking into account the following fracture features, such as location of the fracture, number of pieces and deviation from the original location. Besides, it helps provide accurate 3D visualization and decide optimal recovery plans/processes. To accurately segment fracture bones from CT images, in the paper, we introduce a segmentation technique that makes labeling process easier. Based on the patient-specific anatomy, unique labels are assigned. Unlike conventional techniques, it also includes the removal of unwanted artifacts, such as flesh. In our experiments, we have demonstrated our concept with real-world data (with an accuracy of 95.45%) and have compared with state-of-the-art techniques. For validation, our tests followed expert-based decisions i.e., clinical ground-truth. With the results, our collection of 8000 CT images will be available upon the request.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30710217</pmid><doi>10.1007/s10916-019-1176-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4176-0236</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-5598 |
ispartof | Journal of medical systems, 2019-03, Vol.43 (3), p.60-13, Article 60 |
issn | 0148-5598 1573-689X |
language | eng |
recordid | cdi_proquest_miscellaneous_2179507719 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automation Bones Computed tomography Computer simulation Fractures Health Informatics Health Sciences Image & Signal Processing Image processing Image segmentation Injury analysis Labeling Labels Medical imaging Medical personnel Medicine Medicine & Public Health Physicians Recovery plans State of the art Statistics for Life Sciences Surgery Tomography Trauma Visualization |
title | Automated Fractured Bone Segmentation and Labeling from CT Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Fractured%20Bone%20Segmentation%20and%20Labeling%20from%20CT%20Images&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Ruikar,%20Darshan%20D.&rft.date=2019-03-01&rft.volume=43&rft.issue=3&rft.spage=60&rft.epage=13&rft.pages=60-13&rft.artnum=60&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-019-1176-x&rft_dat=%3Cproquest_cross%3E2179507719%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174663077&rft_id=info:pmid/30710217&rfr_iscdi=true |