Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10

Accurate prediction of absolute protein–ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2019-02, Vol.62 (4), p.2099-2111
Hauptverfasser: Li, Zhe, Huang, Yiyou, Wu, Yinuo, Chen, Jingyi, Wu, Deyan, Zhan, Chang-Guo, Luo, Hai-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2111
container_issue 4
container_start_page 2099
container_title Journal of medicinal chemistry
container_volume 62
creator Li, Zhe
Huang, Yiyou
Wu, Yinuo
Chen, Jingyi
Wu, Deyan
Zhan, Chang-Guo
Luo, Hai-Bin
description Accurate prediction of absolute protein–ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free energies of similar ligands (with only minor structural differences) in binding with a same drug target in practical drug design applications. Herein, a Gaussian algorithm-enhanced FEP (GA-FEP) protocol has been developed to enhance the FEP simulation performance, enabling to efficiently carry out the FEP simulations on vanishing the whole ligand and, thus, predict the absolute binding free energies (ABFEs). Using the GA-FEP protocol, the FEP simulations for the ABFE calculation (denoted as GA-FEP/ABFE) can achieve a satisfactory accuracy for both structurally similar and diverse ligands in a dataset of more than 100 receptor–ligand systems. Further, our GA-FEP/ABFE-guided lead optimization against phosphodiesterase-10 led to the discovery of a subnanomolar inhibitor (IC50 = 0.87 nM, ∼2000-fold improvement in potency) with cocrystal confirmation.
doi_str_mv 10.1021/acs.jmedchem.8b01763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179490639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179490639</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-cd217ed69ed95663eafa475a31dcdbb0991e260c810fe589b87e50d8eb584c663</originalsourceid><addsrcrecordid>eNp9kDtPHDEQx62IKFxIvkGEXNLsMbb3YZfkgICERKQk9cqP2TujXfuwdwu-fUzuSEk1xf8xMz9CvjFYM-DsUtu8fprQ2R1Oa2mAda34QFas4VDVEuoTsgLgvOItF6fkc85PACAYF5_IqYBWKtE1K7K9MjmOy4z0uw_Ohy29TYj0JmDavtCNHu0y6tnHQHVw9Bqz3wYaB6rpr8UEHeIUR53ofdh54-eYXrWfu5j3u-g85hmTzlgx-EI-DnrM-PU4z8if25vfm7vq4fHH_ebqodKilnNlHWcdulahU03bCtSDrrtGC-asMwaUYshbsJLBgI1URnbYgJNoGlnbEjgjF4fefYrPSzmgn3y2OI46YFxyX-pVraAVqljrg9WmmHPCod8nP-n00jPoXxH3BXH_hrg_Ii6x8-OGxRTtf-iNaTHAwfAvHpcUysPvd_4FDDmL5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179490639</pqid></control><display><type>article</type><title>Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Li, Zhe ; Huang, Yiyou ; Wu, Yinuo ; Chen, Jingyi ; Wu, Deyan ; Zhan, Chang-Guo ; Luo, Hai-Bin</creator><creatorcontrib>Li, Zhe ; Huang, Yiyou ; Wu, Yinuo ; Chen, Jingyi ; Wu, Deyan ; Zhan, Chang-Guo ; Luo, Hai-Bin</creatorcontrib><description>Accurate prediction of absolute protein–ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free energies of similar ligands (with only minor structural differences) in binding with a same drug target in practical drug design applications. Herein, a Gaussian algorithm-enhanced FEP (GA-FEP) protocol has been developed to enhance the FEP simulation performance, enabling to efficiently carry out the FEP simulations on vanishing the whole ligand and, thus, predict the absolute binding free energies (ABFEs). Using the GA-FEP protocol, the FEP simulations for the ABFE calculation (denoted as GA-FEP/ABFE) can achieve a satisfactory accuracy for both structurally similar and diverse ligands in a dataset of more than 100 receptor–ligand systems. Further, our GA-FEP/ABFE-guided lead optimization against phosphodiesterase-10 led to the discovery of a subnanomolar inhibitor (IC50 = 0.87 nM, ∼2000-fold improvement in potency) with cocrystal confirmation.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.8b01763</identifier><identifier>PMID: 30689375</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Animals ; Binding Sites ; Drug Design ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - metabolism ; Humans ; Ligands ; Molecular Dynamics Simulation ; Phosphoric Diester Hydrolases - chemistry ; Phosphoric Diester Hydrolases - metabolism ; Protein Binding ; Rats ; Thermodynamics</subject><ispartof>Journal of medicinal chemistry, 2019-02, Vol.62 (4), p.2099-2111</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-cd217ed69ed95663eafa475a31dcdbb0991e260c810fe589b87e50d8eb584c663</citedby><cites>FETCH-LOGICAL-a348t-cd217ed69ed95663eafa475a31dcdbb0991e260c810fe589b87e50d8eb584c663</cites><orcidid>0000-0001-5855-8662 ; 0000-0002-2163-0509 ; 0000-0002-4128-7269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.8b01763$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.8b01763$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30689375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Huang, Yiyou</creatorcontrib><creatorcontrib>Wu, Yinuo</creatorcontrib><creatorcontrib>Chen, Jingyi</creatorcontrib><creatorcontrib>Wu, Deyan</creatorcontrib><creatorcontrib>Zhan, Chang-Guo</creatorcontrib><creatorcontrib>Luo, Hai-Bin</creatorcontrib><title>Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Accurate prediction of absolute protein–ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free energies of similar ligands (with only minor structural differences) in binding with a same drug target in practical drug design applications. Herein, a Gaussian algorithm-enhanced FEP (GA-FEP) protocol has been developed to enhance the FEP simulation performance, enabling to efficiently carry out the FEP simulations on vanishing the whole ligand and, thus, predict the absolute binding free energies (ABFEs). Using the GA-FEP protocol, the FEP simulations for the ABFE calculation (denoted as GA-FEP/ABFE) can achieve a satisfactory accuracy for both structurally similar and diverse ligands in a dataset of more than 100 receptor–ligand systems. Further, our GA-FEP/ABFE-guided lead optimization against phosphodiesterase-10 led to the discovery of a subnanomolar inhibitor (IC50 = 0.87 nM, ∼2000-fold improvement in potency) with cocrystal confirmation.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Drug Design</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Humans</subject><subject>Ligands</subject><subject>Molecular Dynamics Simulation</subject><subject>Phosphoric Diester Hydrolases - chemistry</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Protein Binding</subject><subject>Rats</subject><subject>Thermodynamics</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPHDEQx62IKFxIvkGEXNLsMbb3YZfkgICERKQk9cqP2TujXfuwdwu-fUzuSEk1xf8xMz9CvjFYM-DsUtu8fprQ2R1Oa2mAda34QFas4VDVEuoTsgLgvOItF6fkc85PACAYF5_IqYBWKtE1K7K9MjmOy4z0uw_Ohy29TYj0JmDavtCNHu0y6tnHQHVw9Bqz3wYaB6rpr8UEHeIUR53ofdh54-eYXrWfu5j3u-g85hmTzlgx-EI-DnrM-PU4z8if25vfm7vq4fHH_ebqodKilnNlHWcdulahU03bCtSDrrtGC-asMwaUYshbsJLBgI1URnbYgJNoGlnbEjgjF4fefYrPSzmgn3y2OI46YFxyX-pVraAVqljrg9WmmHPCod8nP-n00jPoXxH3BXH_hrg_Ii6x8-OGxRTtf-iNaTHAwfAvHpcUysPvd_4FDDmL5g</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Li, Zhe</creator><creator>Huang, Yiyou</creator><creator>Wu, Yinuo</creator><creator>Chen, Jingyi</creator><creator>Wu, Deyan</creator><creator>Zhan, Chang-Guo</creator><creator>Luo, Hai-Bin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5855-8662</orcidid><orcidid>https://orcid.org/0000-0002-2163-0509</orcidid><orcidid>https://orcid.org/0000-0002-4128-7269</orcidid></search><sort><creationdate>20190228</creationdate><title>Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10</title><author>Li, Zhe ; Huang, Yiyou ; Wu, Yinuo ; Chen, Jingyi ; Wu, Deyan ; Zhan, Chang-Guo ; Luo, Hai-Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-cd217ed69ed95663eafa475a31dcdbb0991e260c810fe589b87e50d8eb584c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Drug Design</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Humans</topic><topic>Ligands</topic><topic>Molecular Dynamics Simulation</topic><topic>Phosphoric Diester Hydrolases - chemistry</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Protein Binding</topic><topic>Rats</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Huang, Yiyou</creatorcontrib><creatorcontrib>Wu, Yinuo</creatorcontrib><creatorcontrib>Chen, Jingyi</creatorcontrib><creatorcontrib>Wu, Deyan</creatorcontrib><creatorcontrib>Zhan, Chang-Guo</creatorcontrib><creatorcontrib>Luo, Hai-Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhe</au><au>Huang, Yiyou</au><au>Wu, Yinuo</au><au>Chen, Jingyi</au><au>Wu, Deyan</au><au>Zhan, Chang-Guo</au><au>Luo, Hai-Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>62</volume><issue>4</issue><spage>2099</spage><epage>2111</epage><pages>2099-2111</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>Accurate prediction of absolute protein–ligand binding free energy could considerably enhance the success rate of structure-based drug design but is extremely challenging and time-consuming. Free energy perturbation (FEP) has been proven reliable but is limited to prediction of relative binding free energies of similar ligands (with only minor structural differences) in binding with a same drug target in practical drug design applications. Herein, a Gaussian algorithm-enhanced FEP (GA-FEP) protocol has been developed to enhance the FEP simulation performance, enabling to efficiently carry out the FEP simulations on vanishing the whole ligand and, thus, predict the absolute binding free energies (ABFEs). Using the GA-FEP protocol, the FEP simulations for the ABFE calculation (denoted as GA-FEP/ABFE) can achieve a satisfactory accuracy for both structurally similar and diverse ligands in a dataset of more than 100 receptor–ligand systems. Further, our GA-FEP/ABFE-guided lead optimization against phosphodiesterase-10 led to the discovery of a subnanomolar inhibitor (IC50 = 0.87 nM, ∼2000-fold improvement in potency) with cocrystal confirmation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30689375</pmid><doi>10.1021/acs.jmedchem.8b01763</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5855-8662</orcidid><orcidid>https://orcid.org/0000-0002-2163-0509</orcidid><orcidid>https://orcid.org/0000-0002-4128-7269</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2019-02, Vol.62 (4), p.2099-2111
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_2179490639
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Animals
Binding Sites
Drug Design
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - metabolism
Humans
Ligands
Molecular Dynamics Simulation
Phosphoric Diester Hydrolases - chemistry
Phosphoric Diester Hydrolases - metabolism
Protein Binding
Rats
Thermodynamics
title Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absolute%20Binding%20Free%20Energy%20Calculation%20and%20Design%20of%20a%20Subnanomolar%20Inhibitor%20of%20Phosphodiesterase-10&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Li,%20Zhe&rft.date=2019-02-28&rft.volume=62&rft.issue=4&rft.spage=2099&rft.epage=2111&rft.pages=2099-2111&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.8b01763&rft_dat=%3Cproquest_cross%3E2179490639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179490639&rft_id=info:pmid/30689375&rfr_iscdi=true