Leakage fault detection in Electro-Hydraulic Servo Systems using a nonlinear representation learning approach

Electro-Hydraulic Servo Systems (EHSS) are employed as actuators to track the desired trajectory and exert force in heavy-duty industrial applications. The EHSS is often prone to problems such as leakage and actuator seal damage during the course of its utilization. These faults which cannot be dire...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2018-02, Vol.73, p.154-164
Hauptverfasser: Sharifi, Siavash, Tivay, Ali, Rezaei, S. Mehdi, Zareinejad, Mohammad, Mollaei-Dariani, Bijan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue
container_start_page 154
container_title ISA transactions
container_volume 73
creator Sharifi, Siavash
Tivay, Ali
Rezaei, S. Mehdi
Zareinejad, Mohammad
Mollaei-Dariani, Bijan
description Electro-Hydraulic Servo Systems (EHSS) are employed as actuators to track the desired trajectory and exert force in heavy-duty industrial applications. The EHSS is often prone to problems such as leakage and actuator seal damage during the course of its utilization. These faults which cannot be directly detected from current sensor values, can eventually result in complications and degrade control performance. The goal of this research is to use representation learning concepts to detect these faults with decreased complexity. The objective is to find a nonlinear mapping to transform raw data into another space in which classification becomes easier. The data are driven from the hydraulic supply pressure signal. To find the mapping, a custom-built optimization algorithm is proposed along with a suitable cost function to carry out the search for the new representation. The performance of the resulting transformation is tested in an experimental setting to show the merits of the proposed method. •A novel approach to detect leakage fault in the Electro-Hydraulic Servo Systems.•A feature extraction method is used in order to reduce dimensionality.•A nonlinear mapping to transform raw data into another space with decreased complexity.•Find the mapping using an iterative custom-built optimization algorithm.•Effectiveness is verified via simulation and experimental data.
doi_str_mv 10.1016/j.isatra.2018.01.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179490465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057818300156</els_id><sourcerecordid>2179490465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b6c45c99ddceceaafc75f270957ec3130035addafa0fbc2136a2d6cebb555be93</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpabZJ3yAUHXvxZiRbtnUphJA2gYUc0pzFWBqn2tjyVrID-_bVZtMcAwMSo2_mRx9j5wLWAkR9sV37hHPEtQTRrkHkUh_YSrSNLiRI-ZGtAIQuQDXtCfuS0hYApNLtZ3ZSQt3WUlcrNm4In_CReI_LMHNHM9nZT4H7wK-HfI9TcbN3Mb96y-8pPk_8fp9mGhNfkg-PHHmYwuADYeSRdpEShRlfdgy5F16Y3S5OaP-csU89Dom-vp6n7OHn9e-rm2Jz9-v26nJT2LKWc9HVtlJWa-csWULsbaN62YBWDdlSlAClQuewR-g7K0VZo3S1pa5TSnWky1P2_bg3x_5dKM1m9MnSMGCgaUlGikZXGqpaZbQ6ojZOKUXqzS76EePeCDAH0WZrjqLNQbQBkesw9u01YelGcm9D_81m4McRoPzPZ0_RJOspWHI-Zq3GTf79hH8eeZRu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179490465</pqid></control><display><type>article</type><title>Leakage fault detection in Electro-Hydraulic Servo Systems using a nonlinear representation learning approach</title><source>Elsevier ScienceDirect Journals</source><creator>Sharifi, Siavash ; Tivay, Ali ; Rezaei, S. Mehdi ; Zareinejad, Mohammad ; Mollaei-Dariani, Bijan</creator><creatorcontrib>Sharifi, Siavash ; Tivay, Ali ; Rezaei, S. Mehdi ; Zareinejad, Mohammad ; Mollaei-Dariani, Bijan</creatorcontrib><description>Electro-Hydraulic Servo Systems (EHSS) are employed as actuators to track the desired trajectory and exert force in heavy-duty industrial applications. The EHSS is often prone to problems such as leakage and actuator seal damage during the course of its utilization. These faults which cannot be directly detected from current sensor values, can eventually result in complications and degrade control performance. The goal of this research is to use representation learning concepts to detect these faults with decreased complexity. The objective is to find a nonlinear mapping to transform raw data into another space in which classification becomes easier. The data are driven from the hydraulic supply pressure signal. To find the mapping, a custom-built optimization algorithm is proposed along with a suitable cost function to carry out the search for the new representation. The performance of the resulting transformation is tested in an experimental setting to show the merits of the proposed method. •A novel approach to detect leakage fault in the Electro-Hydraulic Servo Systems.•A feature extraction method is used in order to reduce dimensionality.•A nonlinear mapping to transform raw data into another space with decreased complexity.•Find the mapping using an iterative custom-built optimization algorithm.•Effectiveness is verified via simulation and experimental data.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2018.01.015</identifier><identifier>PMID: 30686294</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Classification ; Fault detection ; Hydraulic ; Nonlinear mapping ; Representation learning</subject><ispartof>ISA transactions, 2018-02, Vol.73, p.154-164</ispartof><rights>2018 ISA</rights><rights>Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b6c45c99ddceceaafc75f270957ec3130035addafa0fbc2136a2d6cebb555be93</citedby><cites>FETCH-LOGICAL-c362t-b6c45c99ddceceaafc75f270957ec3130035addafa0fbc2136a2d6cebb555be93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057818300156$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30686294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharifi, Siavash</creatorcontrib><creatorcontrib>Tivay, Ali</creatorcontrib><creatorcontrib>Rezaei, S. Mehdi</creatorcontrib><creatorcontrib>Zareinejad, Mohammad</creatorcontrib><creatorcontrib>Mollaei-Dariani, Bijan</creatorcontrib><title>Leakage fault detection in Electro-Hydraulic Servo Systems using a nonlinear representation learning approach</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>Electro-Hydraulic Servo Systems (EHSS) are employed as actuators to track the desired trajectory and exert force in heavy-duty industrial applications. The EHSS is often prone to problems such as leakage and actuator seal damage during the course of its utilization. These faults which cannot be directly detected from current sensor values, can eventually result in complications and degrade control performance. The goal of this research is to use representation learning concepts to detect these faults with decreased complexity. The objective is to find a nonlinear mapping to transform raw data into another space in which classification becomes easier. The data are driven from the hydraulic supply pressure signal. To find the mapping, a custom-built optimization algorithm is proposed along with a suitable cost function to carry out the search for the new representation. The performance of the resulting transformation is tested in an experimental setting to show the merits of the proposed method. •A novel approach to detect leakage fault in the Electro-Hydraulic Servo Systems.•A feature extraction method is used in order to reduce dimensionality.•A nonlinear mapping to transform raw data into another space with decreased complexity.•Find the mapping using an iterative custom-built optimization algorithm.•Effectiveness is verified via simulation and experimental data.</description><subject>Classification</subject><subject>Fault detection</subject><subject>Hydraulic</subject><subject>Nonlinear mapping</subject><subject>Representation learning</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpabZJ3yAUHXvxZiRbtnUphJA2gYUc0pzFWBqn2tjyVrID-_bVZtMcAwMSo2_mRx9j5wLWAkR9sV37hHPEtQTRrkHkUh_YSrSNLiRI-ZGtAIQuQDXtCfuS0hYApNLtZ3ZSQt3WUlcrNm4In_CReI_LMHNHM9nZT4H7wK-HfI9TcbN3Mb96y-8pPk_8fp9mGhNfkg-PHHmYwuADYeSRdpEShRlfdgy5F16Y3S5OaP-csU89Dom-vp6n7OHn9e-rm2Jz9-v26nJT2LKWc9HVtlJWa-csWULsbaN62YBWDdlSlAClQuewR-g7K0VZo3S1pa5TSnWky1P2_bg3x_5dKM1m9MnSMGCgaUlGikZXGqpaZbQ6ojZOKUXqzS76EePeCDAH0WZrjqLNQbQBkesw9u01YelGcm9D_81m4McRoPzPZ0_RJOspWHI-Zq3GTf79hH8eeZRu</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Sharifi, Siavash</creator><creator>Tivay, Ali</creator><creator>Rezaei, S. Mehdi</creator><creator>Zareinejad, Mohammad</creator><creator>Mollaei-Dariani, Bijan</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201802</creationdate><title>Leakage fault detection in Electro-Hydraulic Servo Systems using a nonlinear representation learning approach</title><author>Sharifi, Siavash ; Tivay, Ali ; Rezaei, S. Mehdi ; Zareinejad, Mohammad ; Mollaei-Dariani, Bijan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b6c45c99ddceceaafc75f270957ec3130035addafa0fbc2136a2d6cebb555be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Fault detection</topic><topic>Hydraulic</topic><topic>Nonlinear mapping</topic><topic>Representation learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifi, Siavash</creatorcontrib><creatorcontrib>Tivay, Ali</creatorcontrib><creatorcontrib>Rezaei, S. Mehdi</creatorcontrib><creatorcontrib>Zareinejad, Mohammad</creatorcontrib><creatorcontrib>Mollaei-Dariani, Bijan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifi, Siavash</au><au>Tivay, Ali</au><au>Rezaei, S. Mehdi</au><au>Zareinejad, Mohammad</au><au>Mollaei-Dariani, Bijan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leakage fault detection in Electro-Hydraulic Servo Systems using a nonlinear representation learning approach</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2018-02</date><risdate>2018</risdate><volume>73</volume><spage>154</spage><epage>164</epage><pages>154-164</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>Electro-Hydraulic Servo Systems (EHSS) are employed as actuators to track the desired trajectory and exert force in heavy-duty industrial applications. The EHSS is often prone to problems such as leakage and actuator seal damage during the course of its utilization. These faults which cannot be directly detected from current sensor values, can eventually result in complications and degrade control performance. The goal of this research is to use representation learning concepts to detect these faults with decreased complexity. The objective is to find a nonlinear mapping to transform raw data into another space in which classification becomes easier. The data are driven from the hydraulic supply pressure signal. To find the mapping, a custom-built optimization algorithm is proposed along with a suitable cost function to carry out the search for the new representation. The performance of the resulting transformation is tested in an experimental setting to show the merits of the proposed method. •A novel approach to detect leakage fault in the Electro-Hydraulic Servo Systems.•A feature extraction method is used in order to reduce dimensionality.•A nonlinear mapping to transform raw data into another space with decreased complexity.•Find the mapping using an iterative custom-built optimization algorithm.•Effectiveness is verified via simulation and experimental data.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>30686294</pmid><doi>10.1016/j.isatra.2018.01.015</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2018-02, Vol.73, p.154-164
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_2179490465
source Elsevier ScienceDirect Journals
subjects Classification
Fault detection
Hydraulic
Nonlinear mapping
Representation learning
title Leakage fault detection in Electro-Hydraulic Servo Systems using a nonlinear representation learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leakage%20fault%20detection%20in%20Electro-Hydraulic%20Servo%20Systems%20using%20a%20nonlinear%20representation%20learning%20approach&rft.jtitle=ISA%20transactions&rft.au=Sharifi,%20Siavash&rft.date=2018-02&rft.volume=73&rft.spage=154&rft.epage=164&rft.pages=154-164&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2018.01.015&rft_dat=%3Cproquest_cross%3E2179490465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179490465&rft_id=info:pmid/30686294&rft_els_id=S0019057818300156&rfr_iscdi=true