Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives
Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delin...
Gespeichert in:
Veröffentlicht in: | Epigenomics 2019-02, Vol.11 (3), p.349-362 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | 3 |
container_start_page | 349 |
container_title | Epigenomics |
container_volume | 11 |
creator | Calcagno, Danielle Q Wisnieski, Fernanda Mota, Elizangela R da Silva Maia de Sousa, Stefanie B Costa da Silva, Jéssica M Leal, Mariana F Gigek, Carolina O Santos, Leonardo C Rasmussen, Lucas T Assumpção, Paulo P Burbano, Rommel R Smith, Marília AC |
description | Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer. |
doi_str_mv | 10.2217/epi-2018-0081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179481402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216524187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-1b3f1be556bab3cf299daca2ee08cf6e385b1bbb4976f89c45401a3af0dd7c8b3</originalsourceid><addsrcrecordid>eNp10U1rFzEQB-Agii21R68S8OJla172JetNSrVCoVBa8BaS2Ymm7iZrkhX67c36rz0I5pKEPDOE3xDymrMzIfjwHlffCMZVw5jiz8gxHzrW8FF8ff505vyInOZ8z-qSQo09f0mOJOsHISU7Jj9u4ow0Ovrd5xIDUgNYHmZTfAzUB_rN5JI8UDABMH2gfllnD3-e8142eSxYdhCXNW5hytSEicLsQ2UzXTHlFaH4X5hfkRfOzBlPH_cTcvfp4vb8srm6_vzl_ONVA60cSsOtdNxi1_XWWAlOjONkwAhEpsD1KFVnubW2HYfeqRHarmXcSOPYNA2grDwh7w591xR_bpiLXnwGnGcTMG5Z1-TGVvGWiUrf_kPv45ZC_Z2uAfedaLkaqmoOClLMOaHTa_KLSQ-as90Nug5C74PQ-yCqf_PYdbMLTk_6b-wVjAfgtrIlzOCxxqsPt1rhwQf8T_PfT_CZEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216524187</pqid></control><display><type>article</type><title>Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives</title><source>MEDLINE</source><source>PubMed Central</source><creator>Calcagno, Danielle Q ; Wisnieski, Fernanda ; Mota, Elizangela R da Silva ; Maia de Sousa, Stefanie B ; Costa da Silva, Jéssica M ; Leal, Mariana F ; Gigek, Carolina O ; Santos, Leonardo C ; Rasmussen, Lucas T ; Assumpção, Paulo P ; Burbano, Rommel R ; Smith, Marília AC</creator><creatorcontrib>Calcagno, Danielle Q ; Wisnieski, Fernanda ; Mota, Elizangela R da Silva ; Maia de Sousa, Stefanie B ; Costa da Silva, Jéssica M ; Leal, Mariana F ; Gigek, Carolina O ; Santos, Leonardo C ; Rasmussen, Lucas T ; Assumpção, Paulo P ; Burbano, Rommel R ; Smith, Marília AC</creatorcontrib><description>Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.</description><identifier>ISSN: 1750-1911</identifier><identifier>EISSN: 1750-192X</identifier><identifier>DOI: 10.2217/epi-2018-0081</identifier><identifier>PMID: 30672330</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Acetylation ; Acetylation - drug effects ; Animals ; Anticancer properties ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Bioactive compounds ; Cancer ; cholecalciferol ; Chromatin ; Curcumin ; Deacetylation ; Deoxyribonucleic acid ; Dietetics ; Disease Susceptibility ; DNA ; DNA methylation ; Enzymatic activity ; Enzyme activity ; Enzymes ; Epigenetics ; garcinol ; Gastric cancer ; Gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Genomes ; histone acetyltransferase ; histone deacetylase ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylase Inhibitors - therapeutic use ; Histones - metabolism ; Humans ; Medical prognosis ; Medical research ; Metastasis ; Nutrients ; nutriepigenetics ; Protein Processing, Post-Translational ; Proteins ; Quercetin ; Regulators ; Resveratrol ; Sodium butyrate ; Stomach Neoplasms - etiology ; Stomach Neoplasms - metabolism ; Stomach Neoplasms - pathology ; Stomach Neoplasms - therapy ; Transcription ; Tumors</subject><ispartof>Epigenomics, 2019-02, Vol.11 (3), p.349-362</ispartof><rights>2019 Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-1b3f1be556bab3cf299daca2ee08cf6e385b1bbb4976f89c45401a3af0dd7c8b3</citedby><cites>FETCH-LOGICAL-c437t-1b3f1be556bab3cf299daca2ee08cf6e385b1bbb4976f89c45401a3af0dd7c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30672330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calcagno, Danielle Q</creatorcontrib><creatorcontrib>Wisnieski, Fernanda</creatorcontrib><creatorcontrib>Mota, Elizangela R da Silva</creatorcontrib><creatorcontrib>Maia de Sousa, Stefanie B</creatorcontrib><creatorcontrib>Costa da Silva, Jéssica M</creatorcontrib><creatorcontrib>Leal, Mariana F</creatorcontrib><creatorcontrib>Gigek, Carolina O</creatorcontrib><creatorcontrib>Santos, Leonardo C</creatorcontrib><creatorcontrib>Rasmussen, Lucas T</creatorcontrib><creatorcontrib>Assumpção, Paulo P</creatorcontrib><creatorcontrib>Burbano, Rommel R</creatorcontrib><creatorcontrib>Smith, Marília AC</creatorcontrib><title>Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives</title><title>Epigenomics</title><addtitle>Epigenomics</addtitle><description>Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.</description><subject>Acetylation</subject><subject>Acetylation - drug effects</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Bioactive compounds</subject><subject>Cancer</subject><subject>cholecalciferol</subject><subject>Chromatin</subject><subject>Curcumin</subject><subject>Deacetylation</subject><subject>Deoxyribonucleic acid</subject><subject>Dietetics</subject><subject>Disease Susceptibility</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Epigenetics</subject><subject>garcinol</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genomes</subject><subject>histone acetyltransferase</subject><subject>histone deacetylase</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylase Inhibitors - therapeutic use</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Metastasis</subject><subject>Nutrients</subject><subject>nutriepigenetics</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Quercetin</subject><subject>Regulators</subject><subject>Resveratrol</subject><subject>Sodium butyrate</subject><subject>Stomach Neoplasms - etiology</subject><subject>Stomach Neoplasms - metabolism</subject><subject>Stomach Neoplasms - pathology</subject><subject>Stomach Neoplasms - therapy</subject><subject>Transcription</subject><subject>Tumors</subject><issn>1750-1911</issn><issn>1750-192X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp10U1rFzEQB-Agii21R68S8OJla172JetNSrVCoVBa8BaS2Ymm7iZrkhX67c36rz0I5pKEPDOE3xDymrMzIfjwHlffCMZVw5jiz8gxHzrW8FF8ff505vyInOZ8z-qSQo09f0mOJOsHISU7Jj9u4ow0Ovrd5xIDUgNYHmZTfAzUB_rN5JI8UDABMH2gfllnD3-e8142eSxYdhCXNW5hytSEicLsQ2UzXTHlFaH4X5hfkRfOzBlPH_cTcvfp4vb8srm6_vzl_ONVA60cSsOtdNxi1_XWWAlOjONkwAhEpsD1KFVnubW2HYfeqRHarmXcSOPYNA2grDwh7w591xR_bpiLXnwGnGcTMG5Z1-TGVvGWiUrf_kPv45ZC_Z2uAfedaLkaqmoOClLMOaHTa_KLSQ-as90Nug5C74PQ-yCqf_PYdbMLTk_6b-wVjAfgtrIlzOCxxqsPt1rhwQf8T_PfT_CZEw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Calcagno, Danielle Q</creator><creator>Wisnieski, Fernanda</creator><creator>Mota, Elizangela R da Silva</creator><creator>Maia de Sousa, Stefanie B</creator><creator>Costa da Silva, Jéssica M</creator><creator>Leal, Mariana F</creator><creator>Gigek, Carolina O</creator><creator>Santos, Leonardo C</creator><creator>Rasmussen, Lucas T</creator><creator>Assumpção, Paulo P</creator><creator>Burbano, Rommel R</creator><creator>Smith, Marília AC</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20190201</creationdate><title>Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives</title><author>Calcagno, Danielle Q ; Wisnieski, Fernanda ; Mota, Elizangela R da Silva ; Maia de Sousa, Stefanie B ; Costa da Silva, Jéssica M ; Leal, Mariana F ; Gigek, Carolina O ; Santos, Leonardo C ; Rasmussen, Lucas T ; Assumpção, Paulo P ; Burbano, Rommel R ; Smith, Marília AC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-1b3f1be556bab3cf299daca2ee08cf6e385b1bbb4976f89c45401a3af0dd7c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylation</topic><topic>Acetylation - drug effects</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Bioactive compounds</topic><topic>Cancer</topic><topic>cholecalciferol</topic><topic>Chromatin</topic><topic>Curcumin</topic><topic>Deacetylation</topic><topic>Deoxyribonucleic acid</topic><topic>Dietetics</topic><topic>Disease Susceptibility</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Epigenetics</topic><topic>garcinol</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genomes</topic><topic>histone acetyltransferase</topic><topic>histone deacetylase</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylase Inhibitors - therapeutic use</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Metastasis</topic><topic>Nutrients</topic><topic>nutriepigenetics</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Quercetin</topic><topic>Regulators</topic><topic>Resveratrol</topic><topic>Sodium butyrate</topic><topic>Stomach Neoplasms - etiology</topic><topic>Stomach Neoplasms - metabolism</topic><topic>Stomach Neoplasms - pathology</topic><topic>Stomach Neoplasms - therapy</topic><topic>Transcription</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calcagno, Danielle Q</creatorcontrib><creatorcontrib>Wisnieski, Fernanda</creatorcontrib><creatorcontrib>Mota, Elizangela R da Silva</creatorcontrib><creatorcontrib>Maia de Sousa, Stefanie B</creatorcontrib><creatorcontrib>Costa da Silva, Jéssica M</creatorcontrib><creatorcontrib>Leal, Mariana F</creatorcontrib><creatorcontrib>Gigek, Carolina O</creatorcontrib><creatorcontrib>Santos, Leonardo C</creatorcontrib><creatorcontrib>Rasmussen, Lucas T</creatorcontrib><creatorcontrib>Assumpção, Paulo P</creatorcontrib><creatorcontrib>Burbano, Rommel R</creatorcontrib><creatorcontrib>Smith, Marília AC</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>UK & Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Epigenomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calcagno, Danielle Q</au><au>Wisnieski, Fernanda</au><au>Mota, Elizangela R da Silva</au><au>Maia de Sousa, Stefanie B</au><au>Costa da Silva, Jéssica M</au><au>Leal, Mariana F</au><au>Gigek, Carolina O</au><au>Santos, Leonardo C</au><au>Rasmussen, Lucas T</au><au>Assumpção, Paulo P</au><au>Burbano, Rommel R</au><au>Smith, Marília AC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives</atitle><jtitle>Epigenomics</jtitle><addtitle>Epigenomics</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>349</spage><epage>362</epage><pages>349-362</pages><issn>1750-1911</issn><eissn>1750-192X</eissn><abstract>Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>30672330</pmid><doi>10.2217/epi-2018-0081</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1750-1911 |
ispartof | Epigenomics, 2019-02, Vol.11 (3), p.349-362 |
issn | 1750-1911 1750-192X |
language | eng |
recordid | cdi_proquest_miscellaneous_2179481402 |
source | MEDLINE; PubMed Central |
subjects | Acetylation Acetylation - drug effects Animals Anticancer properties Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Apoptosis Bioactive compounds Cancer cholecalciferol Chromatin Curcumin Deacetylation Deoxyribonucleic acid Dietetics Disease Susceptibility DNA DNA methylation Enzymatic activity Enzyme activity Enzymes Epigenetics garcinol Gastric cancer Gene expression Gene Expression Regulation, Neoplastic - drug effects Genomes histone acetyltransferase histone deacetylase Histone Deacetylase Inhibitors - pharmacology Histone Deacetylase Inhibitors - therapeutic use Histones - metabolism Humans Medical prognosis Medical research Metastasis Nutrients nutriepigenetics Protein Processing, Post-Translational Proteins Quercetin Regulators Resveratrol Sodium butyrate Stomach Neoplasms - etiology Stomach Neoplasms - metabolism Stomach Neoplasms - pathology Stomach Neoplasms - therapy Transcription Tumors |
title | Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20histone%20acetylation%20in%20gastric%20cancer:%20implications%20of%20dietetic%20compounds%20and%20clinical%20perspectives&rft.jtitle=Epigenomics&rft.au=Calcagno,%20Danielle%20Q&rft.date=2019-02-01&rft.volume=11&rft.issue=3&rft.spage=349&rft.epage=362&rft.pages=349-362&rft.issn=1750-1911&rft.eissn=1750-192X&rft_id=info:doi/10.2217/epi-2018-0081&rft_dat=%3Cproquest_cross%3E2216524187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216524187&rft_id=info:pmid/30672330&rfr_iscdi=true |