Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives

Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epigenomics 2019-02, Vol.11 (3), p.349-362
Hauptverfasser: Calcagno, Danielle Q, Wisnieski, Fernanda, Mota, Elizangela R da Silva, Maia de Sousa, Stefanie B, Costa da Silva, Jéssica M, Leal, Mariana F, Gigek, Carolina O, Santos, Leonardo C, Rasmussen, Lucas T, Assumpção, Paulo P, Burbano, Rommel R, Smith, Marília AC
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 3
container_start_page 349
container_title Epigenomics
container_volume 11
creator Calcagno, Danielle Q
Wisnieski, Fernanda
Mota, Elizangela R da Silva
Maia de Sousa, Stefanie B
Costa da Silva, Jéssica M
Leal, Mariana F
Gigek, Carolina O
Santos, Leonardo C
Rasmussen, Lucas T
Assumpção, Paulo P
Burbano, Rommel R
Smith, Marília AC
description Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.
doi_str_mv 10.2217/epi-2018-0081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179481402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216524187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-1b3f1be556bab3cf299daca2ee08cf6e385b1bbb4976f89c45401a3af0dd7c8b3</originalsourceid><addsrcrecordid>eNp10U1rFzEQB-Agii21R68S8OJla172JetNSrVCoVBa8BaS2Ymm7iZrkhX67c36rz0I5pKEPDOE3xDymrMzIfjwHlffCMZVw5jiz8gxHzrW8FF8ff505vyInOZ8z-qSQo09f0mOJOsHISU7Jj9u4ow0Ovrd5xIDUgNYHmZTfAzUB_rN5JI8UDABMH2gfllnD3-e8142eSxYdhCXNW5hytSEicLsQ2UzXTHlFaH4X5hfkRfOzBlPH_cTcvfp4vb8srm6_vzl_ONVA60cSsOtdNxi1_XWWAlOjONkwAhEpsD1KFVnubW2HYfeqRHarmXcSOPYNA2grDwh7w591xR_bpiLXnwGnGcTMG5Z1-TGVvGWiUrf_kPv45ZC_Z2uAfedaLkaqmoOClLMOaHTa_KLSQ-as90Nug5C74PQ-yCqf_PYdbMLTk_6b-wVjAfgtrIlzOCxxqsPt1rhwQf8T_PfT_CZEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216524187</pqid></control><display><type>article</type><title>Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives</title><source>MEDLINE</source><source>PubMed Central</source><creator>Calcagno, Danielle Q ; Wisnieski, Fernanda ; Mota, Elizangela R da Silva ; Maia de Sousa, Stefanie B ; Costa da Silva, Jéssica M ; Leal, Mariana F ; Gigek, Carolina O ; Santos, Leonardo C ; Rasmussen, Lucas T ; Assumpção, Paulo P ; Burbano, Rommel R ; Smith, Marília AC</creator><creatorcontrib>Calcagno, Danielle Q ; Wisnieski, Fernanda ; Mota, Elizangela R da Silva ; Maia de Sousa, Stefanie B ; Costa da Silva, Jéssica M ; Leal, Mariana F ; Gigek, Carolina O ; Santos, Leonardo C ; Rasmussen, Lucas T ; Assumpção, Paulo P ; Burbano, Rommel R ; Smith, Marília AC</creatorcontrib><description>Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.</description><identifier>ISSN: 1750-1911</identifier><identifier>EISSN: 1750-192X</identifier><identifier>DOI: 10.2217/epi-2018-0081</identifier><identifier>PMID: 30672330</identifier><language>eng</language><publisher>England: Future Medicine Ltd</publisher><subject>Acetylation ; Acetylation - drug effects ; Animals ; Anticancer properties ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Bioactive compounds ; Cancer ; cholecalciferol ; Chromatin ; Curcumin ; Deacetylation ; Deoxyribonucleic acid ; Dietetics ; Disease Susceptibility ; DNA ; DNA methylation ; Enzymatic activity ; Enzyme activity ; Enzymes ; Epigenetics ; garcinol ; Gastric cancer ; Gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Genomes ; histone acetyltransferase ; histone deacetylase ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylase Inhibitors - therapeutic use ; Histones - metabolism ; Humans ; Medical prognosis ; Medical research ; Metastasis ; Nutrients ; nutriepigenetics ; Protein Processing, Post-Translational ; Proteins ; Quercetin ; Regulators ; Resveratrol ; Sodium butyrate ; Stomach Neoplasms - etiology ; Stomach Neoplasms - metabolism ; Stomach Neoplasms - pathology ; Stomach Neoplasms - therapy ; Transcription ; Tumors</subject><ispartof>Epigenomics, 2019-02, Vol.11 (3), p.349-362</ispartof><rights>2019 Future Medicine Ltd</rights><rights>Copyright Future Medicine Ltd Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-1b3f1be556bab3cf299daca2ee08cf6e385b1bbb4976f89c45401a3af0dd7c8b3</citedby><cites>FETCH-LOGICAL-c437t-1b3f1be556bab3cf299daca2ee08cf6e385b1bbb4976f89c45401a3af0dd7c8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30672330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calcagno, Danielle Q</creatorcontrib><creatorcontrib>Wisnieski, Fernanda</creatorcontrib><creatorcontrib>Mota, Elizangela R da Silva</creatorcontrib><creatorcontrib>Maia de Sousa, Stefanie B</creatorcontrib><creatorcontrib>Costa da Silva, Jéssica M</creatorcontrib><creatorcontrib>Leal, Mariana F</creatorcontrib><creatorcontrib>Gigek, Carolina O</creatorcontrib><creatorcontrib>Santos, Leonardo C</creatorcontrib><creatorcontrib>Rasmussen, Lucas T</creatorcontrib><creatorcontrib>Assumpção, Paulo P</creatorcontrib><creatorcontrib>Burbano, Rommel R</creatorcontrib><creatorcontrib>Smith, Marília AC</creatorcontrib><title>Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives</title><title>Epigenomics</title><addtitle>Epigenomics</addtitle><description>Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.</description><subject>Acetylation</subject><subject>Acetylation - drug effects</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Bioactive compounds</subject><subject>Cancer</subject><subject>cholecalciferol</subject><subject>Chromatin</subject><subject>Curcumin</subject><subject>Deacetylation</subject><subject>Deoxyribonucleic acid</subject><subject>Dietetics</subject><subject>Disease Susceptibility</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Enzymes</subject><subject>Epigenetics</subject><subject>garcinol</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genomes</subject><subject>histone acetyltransferase</subject><subject>histone deacetylase</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylase Inhibitors - therapeutic use</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Metastasis</subject><subject>Nutrients</subject><subject>nutriepigenetics</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Quercetin</subject><subject>Regulators</subject><subject>Resveratrol</subject><subject>Sodium butyrate</subject><subject>Stomach Neoplasms - etiology</subject><subject>Stomach Neoplasms - metabolism</subject><subject>Stomach Neoplasms - pathology</subject><subject>Stomach Neoplasms - therapy</subject><subject>Transcription</subject><subject>Tumors</subject><issn>1750-1911</issn><issn>1750-192X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp10U1rFzEQB-Agii21R68S8OJla172JetNSrVCoVBa8BaS2Ymm7iZrkhX67c36rz0I5pKEPDOE3xDymrMzIfjwHlffCMZVw5jiz8gxHzrW8FF8ff505vyInOZ8z-qSQo09f0mOJOsHISU7Jj9u4ow0Ovrd5xIDUgNYHmZTfAzUB_rN5JI8UDABMH2gfllnD3-e8142eSxYdhCXNW5hytSEicLsQ2UzXTHlFaH4X5hfkRfOzBlPH_cTcvfp4vb8srm6_vzl_ONVA60cSsOtdNxi1_XWWAlOjONkwAhEpsD1KFVnubW2HYfeqRHarmXcSOPYNA2grDwh7w591xR_bpiLXnwGnGcTMG5Z1-TGVvGWiUrf_kPv45ZC_Z2uAfedaLkaqmoOClLMOaHTa_KLSQ-as90Nug5C74PQ-yCqf_PYdbMLTk_6b-wVjAfgtrIlzOCxxqsPt1rhwQf8T_PfT_CZEw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Calcagno, Danielle Q</creator><creator>Wisnieski, Fernanda</creator><creator>Mota, Elizangela R da Silva</creator><creator>Maia de Sousa, Stefanie B</creator><creator>Costa da Silva, Jéssica M</creator><creator>Leal, Mariana F</creator><creator>Gigek, Carolina O</creator><creator>Santos, Leonardo C</creator><creator>Rasmussen, Lucas T</creator><creator>Assumpção, Paulo P</creator><creator>Burbano, Rommel R</creator><creator>Smith, Marília AC</creator><general>Future Medicine Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20190201</creationdate><title>Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives</title><author>Calcagno, Danielle Q ; Wisnieski, Fernanda ; Mota, Elizangela R da Silva ; Maia de Sousa, Stefanie B ; Costa da Silva, Jéssica M ; Leal, Mariana F ; Gigek, Carolina O ; Santos, Leonardo C ; Rasmussen, Lucas T ; Assumpção, Paulo P ; Burbano, Rommel R ; Smith, Marília AC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-1b3f1be556bab3cf299daca2ee08cf6e385b1bbb4976f89c45401a3af0dd7c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acetylation</topic><topic>Acetylation - drug effects</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Bioactive compounds</topic><topic>Cancer</topic><topic>cholecalciferol</topic><topic>Chromatin</topic><topic>Curcumin</topic><topic>Deacetylation</topic><topic>Deoxyribonucleic acid</topic><topic>Dietetics</topic><topic>Disease Susceptibility</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Enzymes</topic><topic>Epigenetics</topic><topic>garcinol</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genomes</topic><topic>histone acetyltransferase</topic><topic>histone deacetylase</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylase Inhibitors - therapeutic use</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Metastasis</topic><topic>Nutrients</topic><topic>nutriepigenetics</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Quercetin</topic><topic>Regulators</topic><topic>Resveratrol</topic><topic>Sodium butyrate</topic><topic>Stomach Neoplasms - etiology</topic><topic>Stomach Neoplasms - metabolism</topic><topic>Stomach Neoplasms - pathology</topic><topic>Stomach Neoplasms - therapy</topic><topic>Transcription</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calcagno, Danielle Q</creatorcontrib><creatorcontrib>Wisnieski, Fernanda</creatorcontrib><creatorcontrib>Mota, Elizangela R da Silva</creatorcontrib><creatorcontrib>Maia de Sousa, Stefanie B</creatorcontrib><creatorcontrib>Costa da Silva, Jéssica M</creatorcontrib><creatorcontrib>Leal, Mariana F</creatorcontrib><creatorcontrib>Gigek, Carolina O</creatorcontrib><creatorcontrib>Santos, Leonardo C</creatorcontrib><creatorcontrib>Rasmussen, Lucas T</creatorcontrib><creatorcontrib>Assumpção, Paulo P</creatorcontrib><creatorcontrib>Burbano, Rommel R</creatorcontrib><creatorcontrib>Smith, Marília AC</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>UK &amp; Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Epigenomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calcagno, Danielle Q</au><au>Wisnieski, Fernanda</au><au>Mota, Elizangela R da Silva</au><au>Maia de Sousa, Stefanie B</au><au>Costa da Silva, Jéssica M</au><au>Leal, Mariana F</au><au>Gigek, Carolina O</au><au>Santos, Leonardo C</au><au>Rasmussen, Lucas T</au><au>Assumpção, Paulo P</au><au>Burbano, Rommel R</au><au>Smith, Marília AC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives</atitle><jtitle>Epigenomics</jtitle><addtitle>Epigenomics</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>349</spage><epage>362</epage><pages>349-362</pages><issn>1750-1911</issn><eissn>1750-192X</eissn><abstract>Histone modifications regulate the structural status of chromatin and thereby influence the transcriptional status of genes. These processes are controlled by the recruitment of different enzymes to a specific genomic site. Furthermore, obtaining an understanding of these mechanisms could help delineate alternative treatment and preventive strategies for cancer. For example, in gastric cancer, cholecalciferol, curcumin, resveratrol, quercetin, garcinol and sodium butyrate are natural regulators of acetylation and deacetylation enzyme activity that exert chemopreventive and anticancer effects. Here, we review the recent findings on histone acetylation in gastric cancer and discuss the effects of nutrients and bioactive compounds on histone acetylation and their potential role in the prevention and treatment of this type of cancer.</abstract><cop>England</cop><pub>Future Medicine Ltd</pub><pmid>30672330</pmid><doi>10.2217/epi-2018-0081</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1750-1911
ispartof Epigenomics, 2019-02, Vol.11 (3), p.349-362
issn 1750-1911
1750-192X
language eng
recordid cdi_proquest_miscellaneous_2179481402
source MEDLINE; PubMed Central
subjects Acetylation
Acetylation - drug effects
Animals
Anticancer properties
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Apoptosis
Bioactive compounds
Cancer
cholecalciferol
Chromatin
Curcumin
Deacetylation
Deoxyribonucleic acid
Dietetics
Disease Susceptibility
DNA
DNA methylation
Enzymatic activity
Enzyme activity
Enzymes
Epigenetics
garcinol
Gastric cancer
Gene expression
Gene Expression Regulation, Neoplastic - drug effects
Genomes
histone acetyltransferase
histone deacetylase
Histone Deacetylase Inhibitors - pharmacology
Histone Deacetylase Inhibitors - therapeutic use
Histones - metabolism
Humans
Medical prognosis
Medical research
Metastasis
Nutrients
nutriepigenetics
Protein Processing, Post-Translational
Proteins
Quercetin
Regulators
Resveratrol
Sodium butyrate
Stomach Neoplasms - etiology
Stomach Neoplasms - metabolism
Stomach Neoplasms - pathology
Stomach Neoplasms - therapy
Transcription
Tumors
title Role of histone acetylation in gastric cancer: implications of dietetic compounds and clinical perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20histone%20acetylation%20in%20gastric%20cancer:%20implications%20of%20dietetic%20compounds%20and%20clinical%20perspectives&rft.jtitle=Epigenomics&rft.au=Calcagno,%20Danielle%20Q&rft.date=2019-02-01&rft.volume=11&rft.issue=3&rft.spage=349&rft.epage=362&rft.pages=349-362&rft.issn=1750-1911&rft.eissn=1750-192X&rft_id=info:doi/10.2217/epi-2018-0081&rft_dat=%3Cproquest_cross%3E2216524187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216524187&rft_id=info:pmid/30672330&rfr_iscdi=true