Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells

The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2019-04, Vol.97, p.12-22
Hauptverfasser: Wojak-Ćwik, Iwona M., Rumian, Łucja, Krok-Borkowicz, Małgorzata, Hess, Ricarda, Bernhardt, Ricardo, Dobrzyński, Piotr, Möller, Stephanie, Schnabelrauch, Matthias, Hintze, Vera, Scharnweber, Dieter, Pamuła, Elżbieta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 12
container_title Materials Science & Engineering C
container_volume 97
creator Wojak-Ćwik, Iwona M.
Rumian, Łucja
Krok-Borkowicz, Małgorzata
Hess, Ricarda
Bernhardt, Ricardo
Dobrzyński, Piotr
Möller, Stephanie
Schnabelrauch, Matthias
Hintze, Vera
Scharnweber, Dieter
Pamuła, Elżbieta
description The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l‑lactide‑co‑glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400–600 μm and 2–20 μm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration. •Poly(l-lactide-co-glycolide) scaffold with bimodal pore distribution•Scaffolds modified with matrices containing collagen and high sulphated hyaluronan•Synergistic effect of bimodal pore distribution and matrices on osteogenic differentiation and mineralization
doi_str_mv 10.1016/j.msec.2018.12.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179480976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493118308609</els_id><sourcerecordid>2179480976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-dd705163578bd82fcb04252b3b2afc7eb54c356d3aa4c6ab1fda49be41be5df43</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTtv6Ai4k4MZNlUnqH9zIoKMw4EJdh_zczKSpJG1SNUy_kk_pLXt04cJVSPKdcy73EPKSs5oz3r891KGAqQXjY81Fzbh4RHZ8HJqK8Yk_Jjs2ibFqp4ZfkGelHBjrx2YQT8lFw_phHKdhR35-PUXIN74s3lBwDsxCk6Pah2TVTI8pA7X4m71eF58iVdFSlRfvvPEIwP2SlYF5XmeVaVAIGijUR5TOpwB4pcUo59JsC0V9KgukG4j4bj3mZYiLV7-tMfd2DSrSAAWiuT0FDEA80C2gPCdPnJoLvHg49-T7xw_fLj9V11-uPl--v65MK_hSWTuwjvdNN4zajsIZzVrRCd1ooZwZQHetabreNkq1pleaO6vaSUPLNXTWtc2evDn7HnP6sUJZZPBlm0BFSGuRgg9TO7Jp6BF9_Q96SGuOOB1SuPeON3jsiThTJqdSMjh5zD6ofJKcya1JeZBbk3JrUnIhsUkUvXqwXnUA-1fypzoE3p0BwF3ceciyGI9rA-sztiht8v_z_wXQmrT1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193151319</pqid></control><display><type>article</type><title>Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wojak-Ćwik, Iwona M. ; Rumian, Łucja ; Krok-Borkowicz, Małgorzata ; Hess, Ricarda ; Bernhardt, Ricardo ; Dobrzyński, Piotr ; Möller, Stephanie ; Schnabelrauch, Matthias ; Hintze, Vera ; Scharnweber, Dieter ; Pamuła, Elżbieta</creator><creatorcontrib>Wojak-Ćwik, Iwona M. ; Rumian, Łucja ; Krok-Borkowicz, Małgorzata ; Hess, Ricarda ; Bernhardt, Ricardo ; Dobrzyński, Piotr ; Möller, Stephanie ; Schnabelrauch, Matthias ; Hintze, Vera ; Scharnweber, Dieter ; Pamuła, Elżbieta</creatorcontrib><description>The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l‑lactide‑co‑glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400–600 μm and 2–20 μm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration. •Poly(l-lactide-co-glycolide) scaffold with bimodal pore distribution•Scaffolds modified with matrices containing collagen and high sulphated hyaluronan•Synergistic effect of bimodal pore distribution and matrices on osteogenic differentiation and mineralization</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2018.12.012</identifier><identifier>PMID: 30678897</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Artificial extracellular matrices ; Bimodal porosity ; Biocompatibility ; Biomedical materials ; Bone growth ; Bone sialoprotein ; Bone tissue engineering scaffolds ; Calcium Phosphates - metabolism ; Cell Adhesion ; Cell Differentiation - physiology ; Cell Proliferation ; Collagen ; Collagen (type I) ; Collagen Type I - chemistry ; Core Binding Factor Alpha 1 Subunit - metabolism ; Differentiation (biology) ; Extracellular Matrix ; Human mesenchymal stem cells ; Humans ; Hyaluronic acid ; Hyaluronic Acid - chemistry ; Integrin-Binding Sialoprotein - metabolism ; Leaching ; Male ; Materials science ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - physiology ; Mesenchyme ; Microscopy, Electron, Scanning ; Mineralization ; Osteogenesis ; Osteogenic differentiation ; Osteopontin ; Phase separation ; Poly(l‑lactide‑co‑glycolide) ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Polylactide-co-glycolide ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Stem cells ; Synergistic effect ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds ; Toluidine ; Toluidine blue</subject><ispartof>Materials Science &amp; Engineering C, 2019-04, Vol.97, p.12-22</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-dd705163578bd82fcb04252b3b2afc7eb54c356d3aa4c6ab1fda49be41be5df43</citedby><cites>FETCH-LOGICAL-c421t-dd705163578bd82fcb04252b3b2afc7eb54c356d3aa4c6ab1fda49be41be5df43</cites><orcidid>0000-0002-6053-4966 ; 0000-0002-3989-7578 ; 0000-0003-0369-5189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2018.12.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30678897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wojak-Ćwik, Iwona M.</creatorcontrib><creatorcontrib>Rumian, Łucja</creatorcontrib><creatorcontrib>Krok-Borkowicz, Małgorzata</creatorcontrib><creatorcontrib>Hess, Ricarda</creatorcontrib><creatorcontrib>Bernhardt, Ricardo</creatorcontrib><creatorcontrib>Dobrzyński, Piotr</creatorcontrib><creatorcontrib>Möller, Stephanie</creatorcontrib><creatorcontrib>Schnabelrauch, Matthias</creatorcontrib><creatorcontrib>Hintze, Vera</creatorcontrib><creatorcontrib>Scharnweber, Dieter</creatorcontrib><creatorcontrib>Pamuła, Elżbieta</creatorcontrib><title>Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l‑lactide‑co‑glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400–600 μm and 2–20 μm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration. •Poly(l-lactide-co-glycolide) scaffold with bimodal pore distribution•Scaffolds modified with matrices containing collagen and high sulphated hyaluronan•Synergistic effect of bimodal pore distribution and matrices on osteogenic differentiation and mineralization</description><subject>Adult</subject><subject>Artificial extracellular matrices</subject><subject>Bimodal porosity</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone sialoprotein</subject><subject>Bone tissue engineering scaffolds</subject><subject>Calcium Phosphates - metabolism</subject><subject>Cell Adhesion</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Proliferation</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - chemistry</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Differentiation (biology)</subject><subject>Extracellular Matrix</subject><subject>Human mesenchymal stem cells</subject><subject>Humans</subject><subject>Hyaluronic acid</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Integrin-Binding Sialoprotein - metabolism</subject><subject>Leaching</subject><subject>Male</subject><subject>Materials science</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - physiology</subject><subject>Mesenchyme</subject><subject>Microscopy, Electron, Scanning</subject><subject>Mineralization</subject><subject>Osteogenesis</subject><subject>Osteogenic differentiation</subject><subject>Osteopontin</subject><subject>Phase separation</subject><subject>Poly(l‑lactide‑co‑glycolide)</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Polylactide-co-glycolide</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Stem cells</subject><subject>Synergistic effect</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Toluidine</subject><subject>Toluidine blue</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEUhYMoTtv6Ai4k4MZNlUnqH9zIoKMw4EJdh_zczKSpJG1SNUy_kk_pLXt04cJVSPKdcy73EPKSs5oz3r891KGAqQXjY81Fzbh4RHZ8HJqK8Yk_Jjs2ibFqp4ZfkGelHBjrx2YQT8lFw_phHKdhR35-PUXIN74s3lBwDsxCk6Pah2TVTI8pA7X4m71eF58iVdFSlRfvvPEIwP2SlYF5XmeVaVAIGijUR5TOpwB4pcUo59JsC0V9KgukG4j4bj3mZYiLV7-tMfd2DSrSAAWiuT0FDEA80C2gPCdPnJoLvHg49-T7xw_fLj9V11-uPl--v65MK_hSWTuwjvdNN4zajsIZzVrRCd1ooZwZQHetabreNkq1pleaO6vaSUPLNXTWtc2evDn7HnP6sUJZZPBlm0BFSGuRgg9TO7Jp6BF9_Q96SGuOOB1SuPeON3jsiThTJqdSMjh5zD6ofJKcya1JeZBbk3JrUnIhsUkUvXqwXnUA-1fypzoE3p0BwF3ceciyGI9rA-sztiht8v_z_wXQmrT1</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wojak-Ćwik, Iwona M.</creator><creator>Rumian, Łucja</creator><creator>Krok-Borkowicz, Małgorzata</creator><creator>Hess, Ricarda</creator><creator>Bernhardt, Ricardo</creator><creator>Dobrzyński, Piotr</creator><creator>Möller, Stephanie</creator><creator>Schnabelrauch, Matthias</creator><creator>Hintze, Vera</creator><creator>Scharnweber, Dieter</creator><creator>Pamuła, Elżbieta</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6053-4966</orcidid><orcidid>https://orcid.org/0000-0002-3989-7578</orcidid><orcidid>https://orcid.org/0000-0003-0369-5189</orcidid></search><sort><creationdate>20190401</creationdate><title>Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells</title><author>Wojak-Ćwik, Iwona M. ; Rumian, Łucja ; Krok-Borkowicz, Małgorzata ; Hess, Ricarda ; Bernhardt, Ricardo ; Dobrzyński, Piotr ; Möller, Stephanie ; Schnabelrauch, Matthias ; Hintze, Vera ; Scharnweber, Dieter ; Pamuła, Elżbieta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-dd705163578bd82fcb04252b3b2afc7eb54c356d3aa4c6ab1fda49be41be5df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Artificial extracellular matrices</topic><topic>Bimodal porosity</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone sialoprotein</topic><topic>Bone tissue engineering scaffolds</topic><topic>Calcium Phosphates - metabolism</topic><topic>Cell Adhesion</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Proliferation</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - chemistry</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Differentiation (biology)</topic><topic>Extracellular Matrix</topic><topic>Human mesenchymal stem cells</topic><topic>Humans</topic><topic>Hyaluronic acid</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Integrin-Binding Sialoprotein - metabolism</topic><topic>Leaching</topic><topic>Male</topic><topic>Materials science</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - physiology</topic><topic>Mesenchyme</topic><topic>Microscopy, Electron, Scanning</topic><topic>Mineralization</topic><topic>Osteogenesis</topic><topic>Osteogenic differentiation</topic><topic>Osteopontin</topic><topic>Phase separation</topic><topic>Poly(l‑lactide‑co‑glycolide)</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Polylactide-co-glycolide</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Stem cells</topic><topic>Synergistic effect</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Toluidine</topic><topic>Toluidine blue</topic><toplevel>online_resources</toplevel><creatorcontrib>Wojak-Ćwik, Iwona M.</creatorcontrib><creatorcontrib>Rumian, Łucja</creatorcontrib><creatorcontrib>Krok-Borkowicz, Małgorzata</creatorcontrib><creatorcontrib>Hess, Ricarda</creatorcontrib><creatorcontrib>Bernhardt, Ricardo</creatorcontrib><creatorcontrib>Dobrzyński, Piotr</creatorcontrib><creatorcontrib>Möller, Stephanie</creatorcontrib><creatorcontrib>Schnabelrauch, Matthias</creatorcontrib><creatorcontrib>Hintze, Vera</creatorcontrib><creatorcontrib>Scharnweber, Dieter</creatorcontrib><creatorcontrib>Pamuła, Elżbieta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wojak-Ćwik, Iwona M.</au><au>Rumian, Łucja</au><au>Krok-Borkowicz, Małgorzata</au><au>Hess, Ricarda</au><au>Bernhardt, Ricardo</au><au>Dobrzyński, Piotr</au><au>Möller, Stephanie</au><au>Schnabelrauch, Matthias</au><au>Hintze, Vera</au><au>Scharnweber, Dieter</au><au>Pamuła, Elżbieta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>97</volume><spage>12</spage><epage>22</epage><pages>12-22</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l‑lactide‑co‑glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400–600 μm and 2–20 μm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration. •Poly(l-lactide-co-glycolide) scaffold with bimodal pore distribution•Scaffolds modified with matrices containing collagen and high sulphated hyaluronan•Synergistic effect of bimodal pore distribution and matrices on osteogenic differentiation and mineralization</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30678897</pmid><doi>10.1016/j.msec.2018.12.012</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6053-4966</orcidid><orcidid>https://orcid.org/0000-0002-3989-7578</orcidid><orcidid>https://orcid.org/0000-0003-0369-5189</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2019-04, Vol.97, p.12-22
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_miscellaneous_2179480976
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adult
Artificial extracellular matrices
Bimodal porosity
Biocompatibility
Biomedical materials
Bone growth
Bone sialoprotein
Bone tissue engineering scaffolds
Calcium Phosphates - metabolism
Cell Adhesion
Cell Differentiation - physiology
Cell Proliferation
Collagen
Collagen (type I)
Collagen Type I - chemistry
Core Binding Factor Alpha 1 Subunit - metabolism
Differentiation (biology)
Extracellular Matrix
Human mesenchymal stem cells
Humans
Hyaluronic acid
Hyaluronic Acid - chemistry
Integrin-Binding Sialoprotein - metabolism
Leaching
Male
Materials science
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - physiology
Mesenchyme
Microscopy, Electron, Scanning
Mineralization
Osteogenesis
Osteogenic differentiation
Osteopontin
Phase separation
Poly(l‑lactide‑co‑glycolide)
Polylactic Acid-Polyglycolic Acid Copolymer - chemistry
Polylactide-co-glycolide
Regeneration
Regeneration (physiology)
Scaffolds
Scanning electron microscopy
Scanning transmission electron microscopy
Stem cells
Synergistic effect
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds
Toluidine
Toluidine blue
title Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20bimodal%20pore%20distribution%20and%20artificial%20extracellular%20matrices%20in%20polymeric%20scaffolds%20on%20osteogenic%20differentiation%20of%20human%20mesenchymal%20stem%20cells&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Wojak-%C4%86wik,%20Iwona%20M.&rft.date=2019-04-01&rft.volume=97&rft.spage=12&rft.epage=22&rft.pages=12-22&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2018.12.012&rft_dat=%3Cproquest_cross%3E2179480976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193151319&rft_id=info:pmid/30678897&rft_els_id=S0928493118308609&rfr_iscdi=true