Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells
The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of hum...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2019-04, Vol.97, p.12-22 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 12 |
container_title | Materials Science & Engineering C |
container_volume | 97 |
creator | Wojak-Ćwik, Iwona M. Rumian, Łucja Krok-Borkowicz, Małgorzata Hess, Ricarda Bernhardt, Ricardo Dobrzyński, Piotr Möller, Stephanie Schnabelrauch, Matthias Hintze, Vera Scharnweber, Dieter Pamuła, Elżbieta |
description | The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l‑lactide‑co‑glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400–600 μm and 2–20 μm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration.
•Poly(l-lactide-co-glycolide) scaffold with bimodal pore distribution•Scaffolds modified with matrices containing collagen and high sulphated hyaluronan•Synergistic effect of bimodal pore distribution and matrices on osteogenic differentiation and mineralization |
doi_str_mv | 10.1016/j.msec.2018.12.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179480976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493118308609</els_id><sourcerecordid>2179480976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-dd705163578bd82fcb04252b3b2afc7eb54c356d3aa4c6ab1fda49be41be5df43</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMoTtv6Ai4k4MZNlUnqH9zIoKMw4EJdh_zczKSpJG1SNUy_kk_pLXt04cJVSPKdcy73EPKSs5oz3r891KGAqQXjY81Fzbh4RHZ8HJqK8Yk_Jjs2ibFqp4ZfkGelHBjrx2YQT8lFw_phHKdhR35-PUXIN74s3lBwDsxCk6Pah2TVTI8pA7X4m71eF58iVdFSlRfvvPEIwP2SlYF5XmeVaVAIGijUR5TOpwB4pcUo59JsC0V9KgukG4j4bj3mZYiLV7-tMfd2DSrSAAWiuT0FDEA80C2gPCdPnJoLvHg49-T7xw_fLj9V11-uPl--v65MK_hSWTuwjvdNN4zajsIZzVrRCd1ooZwZQHetabreNkq1pleaO6vaSUPLNXTWtc2evDn7HnP6sUJZZPBlm0BFSGuRgg9TO7Jp6BF9_Q96SGuOOB1SuPeON3jsiThTJqdSMjh5zD6ofJKcya1JeZBbk3JrUnIhsUkUvXqwXnUA-1fypzoE3p0BwF3ceciyGI9rA-sztiht8v_z_wXQmrT1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193151319</pqid></control><display><type>article</type><title>Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Wojak-Ćwik, Iwona M. ; Rumian, Łucja ; Krok-Borkowicz, Małgorzata ; Hess, Ricarda ; Bernhardt, Ricardo ; Dobrzyński, Piotr ; Möller, Stephanie ; Schnabelrauch, Matthias ; Hintze, Vera ; Scharnweber, Dieter ; Pamuła, Elżbieta</creator><creatorcontrib>Wojak-Ćwik, Iwona M. ; Rumian, Łucja ; Krok-Borkowicz, Małgorzata ; Hess, Ricarda ; Bernhardt, Ricardo ; Dobrzyński, Piotr ; Möller, Stephanie ; Schnabelrauch, Matthias ; Hintze, Vera ; Scharnweber, Dieter ; Pamuła, Elżbieta</creatorcontrib><description>The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l‑lactide‑co‑glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400–600 μm and 2–20 μm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration.
•Poly(l-lactide-co-glycolide) scaffold with bimodal pore distribution•Scaffolds modified with matrices containing collagen and high sulphated hyaluronan•Synergistic effect of bimodal pore distribution and matrices on osteogenic differentiation and mineralization</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2018.12.012</identifier><identifier>PMID: 30678897</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Artificial extracellular matrices ; Bimodal porosity ; Biocompatibility ; Biomedical materials ; Bone growth ; Bone sialoprotein ; Bone tissue engineering scaffolds ; Calcium Phosphates - metabolism ; Cell Adhesion ; Cell Differentiation - physiology ; Cell Proliferation ; Collagen ; Collagen (type I) ; Collagen Type I - chemistry ; Core Binding Factor Alpha 1 Subunit - metabolism ; Differentiation (biology) ; Extracellular Matrix ; Human mesenchymal stem cells ; Humans ; Hyaluronic acid ; Hyaluronic Acid - chemistry ; Integrin-Binding Sialoprotein - metabolism ; Leaching ; Male ; Materials science ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - physiology ; Mesenchyme ; Microscopy, Electron, Scanning ; Mineralization ; Osteogenesis ; Osteogenic differentiation ; Osteopontin ; Phase separation ; Poly(l‑lactide‑co‑glycolide) ; Polylactic Acid-Polyglycolic Acid Copolymer - chemistry ; Polylactide-co-glycolide ; Regeneration ; Regeneration (physiology) ; Scaffolds ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Stem cells ; Synergistic effect ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds ; Toluidine ; Toluidine blue</subject><ispartof>Materials Science & Engineering C, 2019-04, Vol.97, p.12-22</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-dd705163578bd82fcb04252b3b2afc7eb54c356d3aa4c6ab1fda49be41be5df43</citedby><cites>FETCH-LOGICAL-c421t-dd705163578bd82fcb04252b3b2afc7eb54c356d3aa4c6ab1fda49be41be5df43</cites><orcidid>0000-0002-6053-4966 ; 0000-0002-3989-7578 ; 0000-0003-0369-5189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2018.12.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30678897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wojak-Ćwik, Iwona M.</creatorcontrib><creatorcontrib>Rumian, Łucja</creatorcontrib><creatorcontrib>Krok-Borkowicz, Małgorzata</creatorcontrib><creatorcontrib>Hess, Ricarda</creatorcontrib><creatorcontrib>Bernhardt, Ricardo</creatorcontrib><creatorcontrib>Dobrzyński, Piotr</creatorcontrib><creatorcontrib>Möller, Stephanie</creatorcontrib><creatorcontrib>Schnabelrauch, Matthias</creatorcontrib><creatorcontrib>Hintze, Vera</creatorcontrib><creatorcontrib>Scharnweber, Dieter</creatorcontrib><creatorcontrib>Pamuła, Elżbieta</creatorcontrib><title>Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l‑lactide‑co‑glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400–600 μm and 2–20 μm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration.
•Poly(l-lactide-co-glycolide) scaffold with bimodal pore distribution•Scaffolds modified with matrices containing collagen and high sulphated hyaluronan•Synergistic effect of bimodal pore distribution and matrices on osteogenic differentiation and mineralization</description><subject>Adult</subject><subject>Artificial extracellular matrices</subject><subject>Bimodal porosity</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone sialoprotein</subject><subject>Bone tissue engineering scaffolds</subject><subject>Calcium Phosphates - metabolism</subject><subject>Cell Adhesion</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Proliferation</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - chemistry</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Differentiation (biology)</subject><subject>Extracellular Matrix</subject><subject>Human mesenchymal stem cells</subject><subject>Humans</subject><subject>Hyaluronic acid</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Integrin-Binding Sialoprotein - metabolism</subject><subject>Leaching</subject><subject>Male</subject><subject>Materials science</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - physiology</subject><subject>Mesenchyme</subject><subject>Microscopy, Electron, Scanning</subject><subject>Mineralization</subject><subject>Osteogenesis</subject><subject>Osteogenic differentiation</subject><subject>Osteopontin</subject><subject>Phase separation</subject><subject>Poly(l‑lactide‑co‑glycolide)</subject><subject>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</subject><subject>Polylactide-co-glycolide</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Stem cells</subject><subject>Synergistic effect</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Toluidine</subject><subject>Toluidine blue</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2KFDEUhYMoTtv6Ai4k4MZNlUnqH9zIoKMw4EJdh_zczKSpJG1SNUy_kk_pLXt04cJVSPKdcy73EPKSs5oz3r891KGAqQXjY81Fzbh4RHZ8HJqK8Yk_Jjs2ibFqp4ZfkGelHBjrx2YQT8lFw_phHKdhR35-PUXIN74s3lBwDsxCk6Pah2TVTI8pA7X4m71eF58iVdFSlRfvvPEIwP2SlYF5XmeVaVAIGijUR5TOpwB4pcUo59JsC0V9KgukG4j4bj3mZYiLV7-tMfd2DSrSAAWiuT0FDEA80C2gPCdPnJoLvHg49-T7xw_fLj9V11-uPl--v65MK_hSWTuwjvdNN4zajsIZzVrRCd1ooZwZQHetabreNkq1pleaO6vaSUPLNXTWtc2evDn7HnP6sUJZZPBlm0BFSGuRgg9TO7Jp6BF9_Q96SGuOOB1SuPeON3jsiThTJqdSMjh5zD6ofJKcya1JeZBbk3JrUnIhsUkUvXqwXnUA-1fypzoE3p0BwF3ceciyGI9rA-sztiht8v_z_wXQmrT1</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wojak-Ćwik, Iwona M.</creator><creator>Rumian, Łucja</creator><creator>Krok-Borkowicz, Małgorzata</creator><creator>Hess, Ricarda</creator><creator>Bernhardt, Ricardo</creator><creator>Dobrzyński, Piotr</creator><creator>Möller, Stephanie</creator><creator>Schnabelrauch, Matthias</creator><creator>Hintze, Vera</creator><creator>Scharnweber, Dieter</creator><creator>Pamuła, Elżbieta</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6053-4966</orcidid><orcidid>https://orcid.org/0000-0002-3989-7578</orcidid><orcidid>https://orcid.org/0000-0003-0369-5189</orcidid></search><sort><creationdate>20190401</creationdate><title>Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells</title><author>Wojak-Ćwik, Iwona M. ; Rumian, Łucja ; Krok-Borkowicz, Małgorzata ; Hess, Ricarda ; Bernhardt, Ricardo ; Dobrzyński, Piotr ; Möller, Stephanie ; Schnabelrauch, Matthias ; Hintze, Vera ; Scharnweber, Dieter ; Pamuła, Elżbieta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-dd705163578bd82fcb04252b3b2afc7eb54c356d3aa4c6ab1fda49be41be5df43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adult</topic><topic>Artificial extracellular matrices</topic><topic>Bimodal porosity</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone sialoprotein</topic><topic>Bone tissue engineering scaffolds</topic><topic>Calcium Phosphates - metabolism</topic><topic>Cell Adhesion</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Proliferation</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - chemistry</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Differentiation (biology)</topic><topic>Extracellular Matrix</topic><topic>Human mesenchymal stem cells</topic><topic>Humans</topic><topic>Hyaluronic acid</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Integrin-Binding Sialoprotein - metabolism</topic><topic>Leaching</topic><topic>Male</topic><topic>Materials science</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - physiology</topic><topic>Mesenchyme</topic><topic>Microscopy, Electron, Scanning</topic><topic>Mineralization</topic><topic>Osteogenesis</topic><topic>Osteogenic differentiation</topic><topic>Osteopontin</topic><topic>Phase separation</topic><topic>Poly(l‑lactide‑co‑glycolide)</topic><topic>Polylactic Acid-Polyglycolic Acid Copolymer - chemistry</topic><topic>Polylactide-co-glycolide</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Stem cells</topic><topic>Synergistic effect</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Toluidine</topic><topic>Toluidine blue</topic><toplevel>online_resources</toplevel><creatorcontrib>Wojak-Ćwik, Iwona M.</creatorcontrib><creatorcontrib>Rumian, Łucja</creatorcontrib><creatorcontrib>Krok-Borkowicz, Małgorzata</creatorcontrib><creatorcontrib>Hess, Ricarda</creatorcontrib><creatorcontrib>Bernhardt, Ricardo</creatorcontrib><creatorcontrib>Dobrzyński, Piotr</creatorcontrib><creatorcontrib>Möller, Stephanie</creatorcontrib><creatorcontrib>Schnabelrauch, Matthias</creatorcontrib><creatorcontrib>Hintze, Vera</creatorcontrib><creatorcontrib>Scharnweber, Dieter</creatorcontrib><creatorcontrib>Pamuła, Elżbieta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wojak-Ćwik, Iwona M.</au><au>Rumian, Łucja</au><au>Krok-Borkowicz, Małgorzata</au><au>Hess, Ricarda</au><au>Bernhardt, Ricardo</au><au>Dobrzyński, Piotr</au><au>Möller, Stephanie</au><au>Schnabelrauch, Matthias</au><au>Hintze, Vera</au><au>Scharnweber, Dieter</au><au>Pamuła, Elżbieta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>97</volume><spage>12</spage><epage>22</epage><pages>12-22</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l‑lactide‑co‑glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400–600 μm and 2–20 μm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration.
•Poly(l-lactide-co-glycolide) scaffold with bimodal pore distribution•Scaffolds modified with matrices containing collagen and high sulphated hyaluronan•Synergistic effect of bimodal pore distribution and matrices on osteogenic differentiation and mineralization</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30678897</pmid><doi>10.1016/j.msec.2018.12.012</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6053-4966</orcidid><orcidid>https://orcid.org/0000-0002-3989-7578</orcidid><orcidid>https://orcid.org/0000-0003-0369-5189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2019-04, Vol.97, p.12-22 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179480976 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adult Artificial extracellular matrices Bimodal porosity Biocompatibility Biomedical materials Bone growth Bone sialoprotein Bone tissue engineering scaffolds Calcium Phosphates - metabolism Cell Adhesion Cell Differentiation - physiology Cell Proliferation Collagen Collagen (type I) Collagen Type I - chemistry Core Binding Factor Alpha 1 Subunit - metabolism Differentiation (biology) Extracellular Matrix Human mesenchymal stem cells Humans Hyaluronic acid Hyaluronic Acid - chemistry Integrin-Binding Sialoprotein - metabolism Leaching Male Materials science Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - physiology Mesenchyme Microscopy, Electron, Scanning Mineralization Osteogenesis Osteogenic differentiation Osteopontin Phase separation Poly(l‑lactide‑co‑glycolide) Polylactic Acid-Polyglycolic Acid Copolymer - chemistry Polylactide-co-glycolide Regeneration Regeneration (physiology) Scaffolds Scanning electron microscopy Scanning transmission electron microscopy Stem cells Synergistic effect Tissue engineering Tissue Engineering - methods Tissue Scaffolds Toluidine Toluidine blue |
title | Synergistic effect of bimodal pore distribution and artificial extracellular matrices in polymeric scaffolds on osteogenic differentiation of human mesenchymal stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20bimodal%20pore%20distribution%20and%20artificial%20extracellular%20matrices%20in%20polymeric%20scaffolds%20on%20osteogenic%20differentiation%20of%20human%20mesenchymal%20stem%20cells&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Wojak-%C4%86wik,%20Iwona%20M.&rft.date=2019-04-01&rft.volume=97&rft.spage=12&rft.epage=22&rft.pages=12-22&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2018.12.012&rft_dat=%3Cproquest_cross%3E2179480976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193151319&rft_id=info:pmid/30678897&rft_els_id=S0928493118308609&rfr_iscdi=true |