Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems
Along with ultralow-energy delay products and symmetric complementary polarities, carbon nanotube field-effect transistors (CNT FETs) are expected to be promising building blocks for energy-efficient computing technology. However, the work frequencies of the existing CNT-based complementary metal-ox...
Gespeichert in:
Veröffentlicht in: | ACS nano 2019-02, Vol.13 (2), p.2526-2535, Article acsnano.8b09488 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2535 |
---|---|
container_issue | 2 |
container_start_page | 2526 |
container_title | ACS nano |
container_volume | 13 |
creator | Liu, Lijun Ding, Li Zhong, Donglai Han, Jie Wang, Shuo Meng, Qinghai Qiu, Chenguang Zhang, Xingye Peng, Lian-Mao Zhang, Zhiyong |
description | Along with ultralow-energy delay products and symmetric complementary polarities, carbon nanotube field-effect transistors (CNT FETs) are expected to be promising building blocks for energy-efficient computing technology. However, the work frequencies of the existing CNT-based complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) are far below the requirement (850 MHz) in state-of-art wireless communication applications. In this work, we fabricated deep submicron CMOS FETs with considerably improved performance of n-type CNT FETs and hence significantly promoted the work frequency of CNT CMOS ICs to 1.98 GHz. Based on these high-speed and sensitive voltage-controlled oscillators, we then presented a wireless sensor interface circuit with working frequency up to 1.5 GHz spectrum. As a preliminary demonstration, an energy-efficient wireless temperature sensing interface system was realized combining a 150 mAh flexible Li-ion battery and a flexible antenna (center frequency of 915 MHz). In general, the CMOS-logic high-speed CNT ICs showed outstanding energy efficiency and thus may potentially advance the application of CNT-based electronics. |
doi_str_mv | 10.1021/acsnano.8b09488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179456320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179456320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-af120c126e11f3d7f1e66d4b4edf729bf71e4d1dacf4070ad38aa845260061663</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMovtfuJEtBxkmaNm2XUnwMiC5UdFdumxuNtElNUmT89VZndOcqd3G-AzmEHHF2xlnC59AGC9adFQ0r06LYILu8FHLGCvm8-XdnfIfshfDGWJYXudwmO4LJMpWZ2CUfFfjGWXo7WeLYIK1cP3TYo43gl_TKvMAr-vhJFzbii4eIilbGt6OJgYJV9OEVjafnw9CZFqJxNtBJ92Q8dhgCvUcbnP9Zew0t0vtliNiHA7KloQt4uH73yePlxUN1Pbu5u1pU5zczEELEGWiesJYnEjnXQuWao5QqbVJUOk_KRuccU8UVtDplOQMlCoAizRLJmORSin1ysvIO3r2PGGLdm9Bi14FFN4Y64XmZZlIkbELnK7T1LgSPuh686acKNWf1d-16Xbte154Wx2v52PSo_vjfvBNwugKmZf3mRm-nv_6r-wJBEI11</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179456320</pqid></control><display><type>article</type><title>Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems</title><source>ACS Publications</source><creator>Liu, Lijun ; Ding, Li ; Zhong, Donglai ; Han, Jie ; Wang, Shuo ; Meng, Qinghai ; Qiu, Chenguang ; Zhang, Xingye ; Peng, Lian-Mao ; Zhang, Zhiyong</creator><creatorcontrib>Liu, Lijun ; Ding, Li ; Zhong, Donglai ; Han, Jie ; Wang, Shuo ; Meng, Qinghai ; Qiu, Chenguang ; Zhang, Xingye ; Peng, Lian-Mao ; Zhang, Zhiyong</creatorcontrib><description>Along with ultralow-energy delay products and symmetric complementary polarities, carbon nanotube field-effect transistors (CNT FETs) are expected to be promising building blocks for energy-efficient computing technology. However, the work frequencies of the existing CNT-based complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) are far below the requirement (850 MHz) in state-of-art wireless communication applications. In this work, we fabricated deep submicron CMOS FETs with considerably improved performance of n-type CNT FETs and hence significantly promoted the work frequency of CNT CMOS ICs to 1.98 GHz. Based on these high-speed and sensitive voltage-controlled oscillators, we then presented a wireless sensor interface circuit with working frequency up to 1.5 GHz spectrum. As a preliminary demonstration, an energy-efficient wireless temperature sensing interface system was realized combining a 150 mAh flexible Li-ion battery and a flexible antenna (center frequency of 915 MHz). In general, the CMOS-logic high-speed CNT ICs showed outstanding energy efficiency and thus may potentially advance the application of CNT-based electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b09488</identifier><identifier>PMID: 30694653</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-02, Vol.13 (2), p.2526-2535, Article acsnano.8b09488</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-af120c126e11f3d7f1e66d4b4edf729bf71e4d1dacf4070ad38aa845260061663</citedby><cites>FETCH-LOGICAL-a333t-af120c126e11f3d7f1e66d4b4edf729bf71e4d1dacf4070ad38aa845260061663</cites><orcidid>0000-0002-5100-1375 ; 0000-0003-1622-3447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b09488$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b09488$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30694653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lijun</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Zhong, Donglai</creatorcontrib><creatorcontrib>Han, Jie</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Meng, Qinghai</creatorcontrib><creatorcontrib>Qiu, Chenguang</creatorcontrib><creatorcontrib>Zhang, Xingye</creatorcontrib><creatorcontrib>Peng, Lian-Mao</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><title>Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Along with ultralow-energy delay products and symmetric complementary polarities, carbon nanotube field-effect transistors (CNT FETs) are expected to be promising building blocks for energy-efficient computing technology. However, the work frequencies of the existing CNT-based complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) are far below the requirement (850 MHz) in state-of-art wireless communication applications. In this work, we fabricated deep submicron CMOS FETs with considerably improved performance of n-type CNT FETs and hence significantly promoted the work frequency of CNT CMOS ICs to 1.98 GHz. Based on these high-speed and sensitive voltage-controlled oscillators, we then presented a wireless sensor interface circuit with working frequency up to 1.5 GHz spectrum. As a preliminary demonstration, an energy-efficient wireless temperature sensing interface system was realized combining a 150 mAh flexible Li-ion battery and a flexible antenna (center frequency of 915 MHz). In general, the CMOS-logic high-speed CNT ICs showed outstanding energy efficiency and thus may potentially advance the application of CNT-based electronics.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAURoMovtfuJEtBxkmaNm2XUnwMiC5UdFdumxuNtElNUmT89VZndOcqd3G-AzmEHHF2xlnC59AGC9adFQ0r06LYILu8FHLGCvm8-XdnfIfshfDGWJYXudwmO4LJMpWZ2CUfFfjGWXo7WeLYIK1cP3TYo43gl_TKvMAr-vhJFzbii4eIilbGt6OJgYJV9OEVjafnw9CZFqJxNtBJ92Q8dhgCvUcbnP9Zew0t0vtliNiHA7KloQt4uH73yePlxUN1Pbu5u1pU5zczEELEGWiesJYnEjnXQuWao5QqbVJUOk_KRuccU8UVtDplOQMlCoAizRLJmORSin1ysvIO3r2PGGLdm9Bi14FFN4Y64XmZZlIkbELnK7T1LgSPuh686acKNWf1d-16Xbte154Wx2v52PSo_vjfvBNwugKmZf3mRm-nv_6r-wJBEI11</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Liu, Lijun</creator><creator>Ding, Li</creator><creator>Zhong, Donglai</creator><creator>Han, Jie</creator><creator>Wang, Shuo</creator><creator>Meng, Qinghai</creator><creator>Qiu, Chenguang</creator><creator>Zhang, Xingye</creator><creator>Peng, Lian-Mao</creator><creator>Zhang, Zhiyong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5100-1375</orcidid><orcidid>https://orcid.org/0000-0003-1622-3447</orcidid></search><sort><creationdate>20190226</creationdate><title>Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems</title><author>Liu, Lijun ; Ding, Li ; Zhong, Donglai ; Han, Jie ; Wang, Shuo ; Meng, Qinghai ; Qiu, Chenguang ; Zhang, Xingye ; Peng, Lian-Mao ; Zhang, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-af120c126e11f3d7f1e66d4b4edf729bf71e4d1dacf4070ad38aa845260061663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lijun</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Zhong, Donglai</creatorcontrib><creatorcontrib>Han, Jie</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Meng, Qinghai</creatorcontrib><creatorcontrib>Qiu, Chenguang</creatorcontrib><creatorcontrib>Zhang, Xingye</creatorcontrib><creatorcontrib>Peng, Lian-Mao</creatorcontrib><creatorcontrib>Zhang, Zhiyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lijun</au><au>Ding, Li</au><au>Zhong, Donglai</au><au>Han, Jie</au><au>Wang, Shuo</au><au>Meng, Qinghai</au><au>Qiu, Chenguang</au><au>Zhang, Xingye</au><au>Peng, Lian-Mao</au><au>Zhang, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-02-26</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>2526</spage><epage>2535</epage><pages>2526-2535</pages><artnum>acsnano.8b09488</artnum><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Along with ultralow-energy delay products and symmetric complementary polarities, carbon nanotube field-effect transistors (CNT FETs) are expected to be promising building blocks for energy-efficient computing technology. However, the work frequencies of the existing CNT-based complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) are far below the requirement (850 MHz) in state-of-art wireless communication applications. In this work, we fabricated deep submicron CMOS FETs with considerably improved performance of n-type CNT FETs and hence significantly promoted the work frequency of CNT CMOS ICs to 1.98 GHz. Based on these high-speed and sensitive voltage-controlled oscillators, we then presented a wireless sensor interface circuit with working frequency up to 1.5 GHz spectrum. As a preliminary demonstration, an energy-efficient wireless temperature sensing interface system was realized combining a 150 mAh flexible Li-ion battery and a flexible antenna (center frequency of 915 MHz). In general, the CMOS-logic high-speed CNT ICs showed outstanding energy efficiency and thus may potentially advance the application of CNT-based electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30694653</pmid><doi>10.1021/acsnano.8b09488</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5100-1375</orcidid><orcidid>https://orcid.org/0000-0003-1622-3447</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2019-02, Vol.13 (2), p.2526-2535, Article acsnano.8b09488 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2179456320 |
source | ACS Publications |
title | Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Complementary%20Gigahertz%20Integrated%20Circuits%20and%20Their%20Applications%20on%20Wireless%20Sensor%20Interface%20Systems&rft.jtitle=ACS%20nano&rft.au=Liu,%20Lijun&rft.date=2019-02-26&rft.volume=13&rft.issue=2&rft.spage=2526&rft.epage=2535&rft.pages=2526-2535&rft.artnum=acsnano.8b09488&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b09488&rft_dat=%3Cproquest_cross%3E2179456320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179456320&rft_id=info:pmid/30694653&rfr_iscdi=true |