Signals of the Neuropilin-1-MET Axis and Cues of Mechanical Force Exertion Converge to Elicit Inflammatory Activation in Coherent Endothelial Cells

The neuropilin-1 (NRP1)-MET signaling axis regulates the motility of individual endothelial cells (ECs). It is unknown how this signaling pathway affects the endothelial barrier in coherent ECs forming a tight monolayer. We hypothesized that it is involved both in modulation of the endothelial barri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2019-03, Vol.202 (5), p.1559-1572
Hauptverfasser: Rezaei, Maryam, Martins Cavaco, Ana C, Seebach, Jochen, Niland, Stephan, Zimmermann, Jana, Hanschmann, Eva-Maria, Hallmann, Rupert, Schillers, Hermann, Eble, Johannes A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1572
container_issue 5
container_start_page 1559
container_title The Journal of immunology (1950)
container_volume 202
creator Rezaei, Maryam
Martins Cavaco, Ana C
Seebach, Jochen
Niland, Stephan
Zimmermann, Jana
Hanschmann, Eva-Maria
Hallmann, Rupert
Schillers, Hermann
Eble, Johannes A
description The neuropilin-1 (NRP1)-MET signaling axis regulates the motility of individual endothelial cells (ECs). It is unknown how this signaling pathway affects the endothelial barrier in coherent ECs forming a tight monolayer. We hypothesized that it is involved both in modulation of the endothelial barrier and in EC activation. To investigate the role of NRP1-MET signaling in inflammatory processes (e.g., systemic inflammatory response syndrome [SIRS] or snakebite-induced SIRS-like conditions), we employed the C-type lectin-related protein rhodocetin-αβ (RCαβ) as a specific trigger of this signal axis in ECs in vitro. In coherent HUVECs, RCαβ reinforced the actin cytoskeleton and increased cell stiffness, thus favoring vascular endothelial cadherin-mediated transmission of intercellular forces. Increased cell stiffness was associated with enhanced activation of RhoA and nuclear translocation of NF-κB. Simultaneously, RCαβ-triggered signaling via the NRP1-MET axis increased EC monolayer permeability, induced transcription of proinflammatory genes such as ICAM-1 and, consequently, leukocyte tethering. The RCαβ-induced transcriptome differed from that induced by hepatocyte growth factor, although in both cases the same tyrosine kinase, MET, was involved. This was due to RCαβ-mediated recruitment of the MET coreceptor NRP1 and additional Rho-mediated activation of the actomyosin system. RCαβ induced similar transcriptional and cellular changes if external shear forces were applied. These data highlight the modulatory role of NRP1 as MET coreceptor, and they explain how some snake venoms induce SIRS-like conditions. Additionally, this study demonstrates that inflammatory activation of coherent ECs is triggered by converging signals that are induced by NRP1-MET signaling and influenced by intercellular forces.
doi_str_mv 10.4049/jimmunol.1801346
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179448530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179448530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2566-fe355dfd968867af032a13c9ac8a14616d5643cc141c830866f13cfaa879fabf3</originalsourceid><addsrcrecordid>eNo9kTtPwzAUhS0EglLYmZBHlpTr2HGSsYpSQOIxAHNkHLt15djFThD9HfxhUihMd7jfOfdxELogMGPAyuu16brBeTsjBRDK-AGakCyDhHPgh2gCkKYJyXl-gk5jXAMAh5QdoxMKvExTAhP09WyWTtiIvcb9SuFHNQS_Mda4hCQP9Quef5qIhWtxNagf6kHJlXBGCosXPkiF608VeuMdrrz7UGGpcO9xbY00Pb5z2oquE70PWzyXvfkQP6jZ0SsVlOtx7Vo_jrZmdKyUtfEMHelxJXW-r1P0uqhfqtvk_unmrprfJzLNOE-0olnW6rbkRcFzoYGmglBZClkIwjjhbcYZlZIwIgsKBed6bGshirzU4k3TKbr69d0E_z5e1zediXLcQDjlh9ikJC8ZKzIKIwq_qAw-xqB0swmmE2HbEGh2UTR_UTT7KEbJ5d59eOtU-y_4-z39Bml6h-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179448530</pqid></control><display><type>article</type><title>Signals of the Neuropilin-1-MET Axis and Cues of Mechanical Force Exertion Converge to Elicit Inflammatory Activation in Coherent Endothelial Cells</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Rezaei, Maryam ; Martins Cavaco, Ana C ; Seebach, Jochen ; Niland, Stephan ; Zimmermann, Jana ; Hanschmann, Eva-Maria ; Hallmann, Rupert ; Schillers, Hermann ; Eble, Johannes A</creator><creatorcontrib>Rezaei, Maryam ; Martins Cavaco, Ana C ; Seebach, Jochen ; Niland, Stephan ; Zimmermann, Jana ; Hanschmann, Eva-Maria ; Hallmann, Rupert ; Schillers, Hermann ; Eble, Johannes A</creatorcontrib><description>The neuropilin-1 (NRP1)-MET signaling axis regulates the motility of individual endothelial cells (ECs). It is unknown how this signaling pathway affects the endothelial barrier in coherent ECs forming a tight monolayer. We hypothesized that it is involved both in modulation of the endothelial barrier and in EC activation. To investigate the role of NRP1-MET signaling in inflammatory processes (e.g., systemic inflammatory response syndrome [SIRS] or snakebite-induced SIRS-like conditions), we employed the C-type lectin-related protein rhodocetin-αβ (RCαβ) as a specific trigger of this signal axis in ECs in vitro. In coherent HUVECs, RCαβ reinforced the actin cytoskeleton and increased cell stiffness, thus favoring vascular endothelial cadherin-mediated transmission of intercellular forces. Increased cell stiffness was associated with enhanced activation of RhoA and nuclear translocation of NF-κB. Simultaneously, RCαβ-triggered signaling via the NRP1-MET axis increased EC monolayer permeability, induced transcription of proinflammatory genes such as ICAM-1 and, consequently, leukocyte tethering. The RCαβ-induced transcriptome differed from that induced by hepatocyte growth factor, although in both cases the same tyrosine kinase, MET, was involved. This was due to RCαβ-mediated recruitment of the MET coreceptor NRP1 and additional Rho-mediated activation of the actomyosin system. RCαβ induced similar transcriptional and cellular changes if external shear forces were applied. These data highlight the modulatory role of NRP1 as MET coreceptor, and they explain how some snake venoms induce SIRS-like conditions. Additionally, this study demonstrates that inflammatory activation of coherent ECs is triggered by converging signals that are induced by NRP1-MET signaling and influenced by intercellular forces.</description><identifier>ISSN: 0022-1767</identifier><identifier>EISSN: 1550-6606</identifier><identifier>DOI: 10.4049/jimmunol.1801346</identifier><identifier>PMID: 30692210</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of immunology (1950), 2019-03, Vol.202 (5), p.1559-1572</ispartof><rights>Copyright © 2019 by The American Association of Immunologists, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2566-fe355dfd968867af032a13c9ac8a14616d5643cc141c830866f13cfaa879fabf3</citedby><cites>FETCH-LOGICAL-c2566-fe355dfd968867af032a13c9ac8a14616d5643cc141c830866f13cfaa879fabf3</cites><orcidid>0000-0001-9156-2137 ; 0000-0003-3288-1706 ; 0000-0002-2055-8656 ; 0000-0001-6090-4771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30692210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rezaei, Maryam</creatorcontrib><creatorcontrib>Martins Cavaco, Ana C</creatorcontrib><creatorcontrib>Seebach, Jochen</creatorcontrib><creatorcontrib>Niland, Stephan</creatorcontrib><creatorcontrib>Zimmermann, Jana</creatorcontrib><creatorcontrib>Hanschmann, Eva-Maria</creatorcontrib><creatorcontrib>Hallmann, Rupert</creatorcontrib><creatorcontrib>Schillers, Hermann</creatorcontrib><creatorcontrib>Eble, Johannes A</creatorcontrib><title>Signals of the Neuropilin-1-MET Axis and Cues of Mechanical Force Exertion Converge to Elicit Inflammatory Activation in Coherent Endothelial Cells</title><title>The Journal of immunology (1950)</title><addtitle>J Immunol</addtitle><description>The neuropilin-1 (NRP1)-MET signaling axis regulates the motility of individual endothelial cells (ECs). It is unknown how this signaling pathway affects the endothelial barrier in coherent ECs forming a tight monolayer. We hypothesized that it is involved both in modulation of the endothelial barrier and in EC activation. To investigate the role of NRP1-MET signaling in inflammatory processes (e.g., systemic inflammatory response syndrome [SIRS] or snakebite-induced SIRS-like conditions), we employed the C-type lectin-related protein rhodocetin-αβ (RCαβ) as a specific trigger of this signal axis in ECs in vitro. In coherent HUVECs, RCαβ reinforced the actin cytoskeleton and increased cell stiffness, thus favoring vascular endothelial cadherin-mediated transmission of intercellular forces. Increased cell stiffness was associated with enhanced activation of RhoA and nuclear translocation of NF-κB. Simultaneously, RCαβ-triggered signaling via the NRP1-MET axis increased EC monolayer permeability, induced transcription of proinflammatory genes such as ICAM-1 and, consequently, leukocyte tethering. The RCαβ-induced transcriptome differed from that induced by hepatocyte growth factor, although in both cases the same tyrosine kinase, MET, was involved. This was due to RCαβ-mediated recruitment of the MET coreceptor NRP1 and additional Rho-mediated activation of the actomyosin system. RCαβ induced similar transcriptional and cellular changes if external shear forces were applied. These data highlight the modulatory role of NRP1 as MET coreceptor, and they explain how some snake venoms induce SIRS-like conditions. Additionally, this study demonstrates that inflammatory activation of coherent ECs is triggered by converging signals that are induced by NRP1-MET signaling and influenced by intercellular forces.</description><issn>0022-1767</issn><issn>1550-6606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kTtPwzAUhS0EglLYmZBHlpTr2HGSsYpSQOIxAHNkHLt15djFThD9HfxhUihMd7jfOfdxELogMGPAyuu16brBeTsjBRDK-AGakCyDhHPgh2gCkKYJyXl-gk5jXAMAh5QdoxMKvExTAhP09WyWTtiIvcb9SuFHNQS_Mda4hCQP9Quef5qIhWtxNagf6kHJlXBGCosXPkiF608VeuMdrrz7UGGpcO9xbY00Pb5z2oquE70PWzyXvfkQP6jZ0SsVlOtx7Vo_jrZmdKyUtfEMHelxJXW-r1P0uqhfqtvk_unmrprfJzLNOE-0olnW6rbkRcFzoYGmglBZClkIwjjhbcYZlZIwIgsKBed6bGshirzU4k3TKbr69d0E_z5e1zediXLcQDjlh9ikJC8ZKzIKIwq_qAw-xqB0swmmE2HbEGh2UTR_UTT7KEbJ5d59eOtU-y_4-z39Bml6h-M</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Rezaei, Maryam</creator><creator>Martins Cavaco, Ana C</creator><creator>Seebach, Jochen</creator><creator>Niland, Stephan</creator><creator>Zimmermann, Jana</creator><creator>Hanschmann, Eva-Maria</creator><creator>Hallmann, Rupert</creator><creator>Schillers, Hermann</creator><creator>Eble, Johannes A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9156-2137</orcidid><orcidid>https://orcid.org/0000-0003-3288-1706</orcidid><orcidid>https://orcid.org/0000-0002-2055-8656</orcidid><orcidid>https://orcid.org/0000-0001-6090-4771</orcidid></search><sort><creationdate>20190301</creationdate><title>Signals of the Neuropilin-1-MET Axis and Cues of Mechanical Force Exertion Converge to Elicit Inflammatory Activation in Coherent Endothelial Cells</title><author>Rezaei, Maryam ; Martins Cavaco, Ana C ; Seebach, Jochen ; Niland, Stephan ; Zimmermann, Jana ; Hanschmann, Eva-Maria ; Hallmann, Rupert ; Schillers, Hermann ; Eble, Johannes A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2566-fe355dfd968867af032a13c9ac8a14616d5643cc141c830866f13cfaa879fabf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezaei, Maryam</creatorcontrib><creatorcontrib>Martins Cavaco, Ana C</creatorcontrib><creatorcontrib>Seebach, Jochen</creatorcontrib><creatorcontrib>Niland, Stephan</creatorcontrib><creatorcontrib>Zimmermann, Jana</creatorcontrib><creatorcontrib>Hanschmann, Eva-Maria</creatorcontrib><creatorcontrib>Hallmann, Rupert</creatorcontrib><creatorcontrib>Schillers, Hermann</creatorcontrib><creatorcontrib>Eble, Johannes A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of immunology (1950)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezaei, Maryam</au><au>Martins Cavaco, Ana C</au><au>Seebach, Jochen</au><au>Niland, Stephan</au><au>Zimmermann, Jana</au><au>Hanschmann, Eva-Maria</au><au>Hallmann, Rupert</au><au>Schillers, Hermann</au><au>Eble, Johannes A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signals of the Neuropilin-1-MET Axis and Cues of Mechanical Force Exertion Converge to Elicit Inflammatory Activation in Coherent Endothelial Cells</atitle><jtitle>The Journal of immunology (1950)</jtitle><addtitle>J Immunol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>202</volume><issue>5</issue><spage>1559</spage><epage>1572</epage><pages>1559-1572</pages><issn>0022-1767</issn><eissn>1550-6606</eissn><abstract>The neuropilin-1 (NRP1)-MET signaling axis regulates the motility of individual endothelial cells (ECs). It is unknown how this signaling pathway affects the endothelial barrier in coherent ECs forming a tight monolayer. We hypothesized that it is involved both in modulation of the endothelial barrier and in EC activation. To investigate the role of NRP1-MET signaling in inflammatory processes (e.g., systemic inflammatory response syndrome [SIRS] or snakebite-induced SIRS-like conditions), we employed the C-type lectin-related protein rhodocetin-αβ (RCαβ) as a specific trigger of this signal axis in ECs in vitro. In coherent HUVECs, RCαβ reinforced the actin cytoskeleton and increased cell stiffness, thus favoring vascular endothelial cadherin-mediated transmission of intercellular forces. Increased cell stiffness was associated with enhanced activation of RhoA and nuclear translocation of NF-κB. Simultaneously, RCαβ-triggered signaling via the NRP1-MET axis increased EC monolayer permeability, induced transcription of proinflammatory genes such as ICAM-1 and, consequently, leukocyte tethering. The RCαβ-induced transcriptome differed from that induced by hepatocyte growth factor, although in both cases the same tyrosine kinase, MET, was involved. This was due to RCαβ-mediated recruitment of the MET coreceptor NRP1 and additional Rho-mediated activation of the actomyosin system. RCαβ induced similar transcriptional and cellular changes if external shear forces were applied. These data highlight the modulatory role of NRP1 as MET coreceptor, and they explain how some snake venoms induce SIRS-like conditions. Additionally, this study demonstrates that inflammatory activation of coherent ECs is triggered by converging signals that are induced by NRP1-MET signaling and influenced by intercellular forces.</abstract><cop>United States</cop><pmid>30692210</pmid><doi>10.4049/jimmunol.1801346</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9156-2137</orcidid><orcidid>https://orcid.org/0000-0003-3288-1706</orcidid><orcidid>https://orcid.org/0000-0002-2055-8656</orcidid><orcidid>https://orcid.org/0000-0001-6090-4771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1767
ispartof The Journal of immunology (1950), 2019-03, Vol.202 (5), p.1559-1572
issn 0022-1767
1550-6606
language eng
recordid cdi_proquest_miscellaneous_2179448530
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
title Signals of the Neuropilin-1-MET Axis and Cues of Mechanical Force Exertion Converge to Elicit Inflammatory Activation in Coherent Endothelial Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A03%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signals%20of%20the%20Neuropilin-1-MET%20Axis%20and%20Cues%20of%20Mechanical%20Force%20Exertion%20Converge%20to%20Elicit%20Inflammatory%20Activation%20in%20Coherent%20Endothelial%20Cells&rft.jtitle=The%20Journal%20of%20immunology%20(1950)&rft.au=Rezaei,%20Maryam&rft.date=2019-03-01&rft.volume=202&rft.issue=5&rft.spage=1559&rft.epage=1572&rft.pages=1559-1572&rft.issn=0022-1767&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.1801346&rft_dat=%3Cproquest_cross%3E2179448530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179448530&rft_id=info:pmid/30692210&rfr_iscdi=true