Src-mediated phosphorylation of βPix-b regulates dendritic spine morphogenesis

PAK-interacting guanine nucleotide exchange factor (βPix) has been implicated in many actin-based cellular processes including spine morphogenesis in neurons. However, the molecular mechanisms by which βPix controls spine morphology remain elusive. Previously, we have reported the expression of seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2019-03, Vol.132 (5)
Hauptverfasser: Shin, Mi-Seon, Song, Sang-Ho, Shin, Jung Eun, Lee, Seung-Hye, Huh, Sung-Oh, Park, Dongeun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PAK-interacting guanine nucleotide exchange factor (βPix) has been implicated in many actin-based cellular processes including spine morphogenesis in neurons. However, the molecular mechanisms by which βPix controls spine morphology remain elusive. Previously, we have reported the expression of several alternative spliced βPix isoforms in the brain. Here, we report a novel finding that the b isoform of βPix (βPix-b) mediates regulation of spine and synapse formation. We found that βPix-b, which is mainly expressed in neurons, enhances spine and synapse formation through preferential localization at spines. In neurons, glutamate treatment efficiently stimulates Rac1 GEF activity of βPix-b. The glutamate stimulation also promotes Src kinase-mediated phosphorylation of βPix-b in both AMPA receptor- and NMDA receptor-dependent manner. Tyrosine 598 (Y598) of βPix-b is identified as the major Src-mediated phosphorylation site. Finally, Y598 phosphorylation of βPix-b enhances its Rac1 GEF activity that is critical for spine and synapse formation. In conclusion, we provide a novel mechanism by which βPix-b regulates activity-dependent spinogenesis and synaptogenesis via Src-mediated phosphorylation.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.224980