Predicting the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding based on the halogen‐bonded interactions

The “windmill” pattern cyclic halogen polymers (XBr)3 (X = Cl, Br, I) and (BrY)n (n = 3–6, Y = Cl, Br, I) have been investigated using the density functional theory. Due to the anisotropic distribution of its electron density, the halogen atom can form halogen‐bonded interactions by functioning as b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2019-04, Vol.40 (11), p.1219-1226
Hauptverfasser: Liu, Mengyu, Zeng, Yanli, Sun, Zheng, Meng, Lingpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 11
container_start_page 1219
container_title Journal of computational chemistry
container_volume 40
creator Liu, Mengyu
Zeng, Yanli
Sun, Zheng
Meng, Lingpeng
description The “windmill” pattern cyclic halogen polymers (XBr)3 (X = Cl, Br, I) and (BrY)n (n = 3–6, Y = Cl, Br, I) have been investigated using the density functional theory. Due to the anisotropic distribution of its electron density, the halogen atom can form halogen‐bonded interactions by functioning as both electron donor sites and electron acceptor sites. For (XBr)3 (X = Cl, Br, I) trimers, the Cl···Cl interaction is the weakest, and the I···I interaction is the strongest. For (BrY)n (n = 3–6, Y = Cl, Br, I), the Br···Br halogen bonds are the strongest in (BrY)4 tetramers. We predict that the iodine‐4 synthon may allow creation of a self‐assembled island during crystal growth. The angle formed by the electron‐depleted sigma‐hole, the halogen atom and the electron‐rich equatorial belt perpendicular to the bond direction, together with the halogen‐bond angle, can be used to explain the geometries and strength of the halogen‐bond interactions. © 2018 Wiley Periodicals, Inc. M06‐2X calculations with def2‐TZVPD basis set was used to investigate the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding.
doi_str_mv 10.1002/jcc.25781
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179436780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179436780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3531-b54128fcdacb529c9c294d6b1b836144ddc508e507763ff6cb0cb212d6d441b93</originalsourceid><addsrcrecordid>eNp10T1rGzEAxnFRGhonzZAvUARd4uESvZ1OGjoE07wRSIcWsh2nl7PP3EmudMZ489I9kDX5cv4kkWMnQ6DTge7HX4IHgGOMTjFC5Gyq9SnJC4E_gQFGkmdSFPefwQBhSTLBc7wPDmKcIoRoztkXsE8RLzjnbAD-_QrWNLpv3Bj2EwsnVevH1q1XDw6eOPgD0vXqkQ9hXLp-4l2EvYe1D90rXq-eFo0zXdO269UznFV9b4ODyjuz6akqWgO9-xDe_E7njUu4Sjen6lewV1dttEe77yH4c_Hz9-gqu727vB6d32aa5hRnKmeYiFqbSqucSC01kcxwhZWgHDNmjM6RsDkqCk7rmmuFtCKYGG4Yw0rSQ3Cy7c6C_zu3sS-7JmrbtpWzfh5LggvJKC8ESvT7Bzr18-DS65ISXBIppEhquFU6-BiDrctZaLoqLEuMys02ZdqmfN0m2W-74lx11rzLtzESONuCRdPa5f9L5c1otE2-APt9nRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186929898</pqid></control><display><type>article</type><title>Predicting the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding based on the halogen‐bonded interactions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Mengyu ; Zeng, Yanli ; Sun, Zheng ; Meng, Lingpeng</creator><creatorcontrib>Liu, Mengyu ; Zeng, Yanli ; Sun, Zheng ; Meng, Lingpeng</creatorcontrib><description>The “windmill” pattern cyclic halogen polymers (XBr)3 (X = Cl, Br, I) and (BrY)n (n = 3–6, Y = Cl, Br, I) have been investigated using the density functional theory. Due to the anisotropic distribution of its electron density, the halogen atom can form halogen‐bonded interactions by functioning as both electron donor sites and electron acceptor sites. For (XBr)3 (X = Cl, Br, I) trimers, the Cl···Cl interaction is the weakest, and the I···I interaction is the strongest. For (BrY)n (n = 3–6, Y = Cl, Br, I), the Br···Br halogen bonds are the strongest in (BrY)4 tetramers. We predict that the iodine‐4 synthon may allow creation of a self‐assembled island during crystal growth. The angle formed by the electron‐depleted sigma‐hole, the halogen atom and the electron‐rich equatorial belt perpendicular to the bond direction, together with the halogen‐bond angle, can be used to explain the geometries and strength of the halogen‐bond interactions. © 2018 Wiley Periodicals, Inc. M06‐2X calculations with def2‐TZVPD basis set was used to investigate the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.25781</identifier><identifier>PMID: 30676664</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bonding strength ; Bromine ; Crystal growth ; density difference ; Density functional theory ; Electron density ; halogen bond ; Iodine ; molecular electrostatic potentials ; Polymers ; topology analysis of electron density ; Trimers</subject><ispartof>Journal of computational chemistry, 2019-04, Vol.40 (11), p.1219-1226</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3531-b54128fcdacb529c9c294d6b1b836144ddc508e507763ff6cb0cb212d6d441b93</citedby><cites>FETCH-LOGICAL-c3531-b54128fcdacb529c9c294d6b1b836144ddc508e507763ff6cb0cb212d6d441b93</cites><orcidid>0000-0002-7141-6172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.25781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.25781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30676664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Mengyu</creatorcontrib><creatorcontrib>Zeng, Yanli</creatorcontrib><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Meng, Lingpeng</creatorcontrib><title>Predicting the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding based on the halogen‐bonded interactions</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>The “windmill” pattern cyclic halogen polymers (XBr)3 (X = Cl, Br, I) and (BrY)n (n = 3–6, Y = Cl, Br, I) have been investigated using the density functional theory. Due to the anisotropic distribution of its electron density, the halogen atom can form halogen‐bonded interactions by functioning as both electron donor sites and electron acceptor sites. For (XBr)3 (X = Cl, Br, I) trimers, the Cl···Cl interaction is the weakest, and the I···I interaction is the strongest. For (BrY)n (n = 3–6, Y = Cl, Br, I), the Br···Br halogen bonds are the strongest in (BrY)4 tetramers. We predict that the iodine‐4 synthon may allow creation of a self‐assembled island during crystal growth. The angle formed by the electron‐depleted sigma‐hole, the halogen atom and the electron‐rich equatorial belt perpendicular to the bond direction, together with the halogen‐bond angle, can be used to explain the geometries and strength of the halogen‐bond interactions. © 2018 Wiley Periodicals, Inc. M06‐2X calculations with def2‐TZVPD basis set was used to investigate the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding.</description><subject>Bonding strength</subject><subject>Bromine</subject><subject>Crystal growth</subject><subject>density difference</subject><subject>Density functional theory</subject><subject>Electron density</subject><subject>halogen bond</subject><subject>Iodine</subject><subject>molecular electrostatic potentials</subject><subject>Polymers</subject><subject>topology analysis of electron density</subject><subject>Trimers</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10T1rGzEAxnFRGhonzZAvUARd4uESvZ1OGjoE07wRSIcWsh2nl7PP3EmudMZ489I9kDX5cv4kkWMnQ6DTge7HX4IHgGOMTjFC5Gyq9SnJC4E_gQFGkmdSFPefwQBhSTLBc7wPDmKcIoRoztkXsE8RLzjnbAD-_QrWNLpv3Bj2EwsnVevH1q1XDw6eOPgD0vXqkQ9hXLp-4l2EvYe1D90rXq-eFo0zXdO269UznFV9b4ODyjuz6akqWgO9-xDe_E7njUu4Sjen6lewV1dttEe77yH4c_Hz9-gqu727vB6d32aa5hRnKmeYiFqbSqucSC01kcxwhZWgHDNmjM6RsDkqCk7rmmuFtCKYGG4Yw0rSQ3Cy7c6C_zu3sS-7JmrbtpWzfh5LggvJKC8ESvT7Bzr18-DS65ISXBIppEhquFU6-BiDrctZaLoqLEuMys02ZdqmfN0m2W-74lx11rzLtzESONuCRdPa5f9L5c1otE2-APt9nRc</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Liu, Mengyu</creator><creator>Zeng, Yanli</creator><creator>Sun, Zheng</creator><creator>Meng, Lingpeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7141-6172</orcidid></search><sort><creationdate>20190430</creationdate><title>Predicting the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding based on the halogen‐bonded interactions</title><author>Liu, Mengyu ; Zeng, Yanli ; Sun, Zheng ; Meng, Lingpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3531-b54128fcdacb529c9c294d6b1b836144ddc508e507763ff6cb0cb212d6d441b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bonding strength</topic><topic>Bromine</topic><topic>Crystal growth</topic><topic>density difference</topic><topic>Density functional theory</topic><topic>Electron density</topic><topic>halogen bond</topic><topic>Iodine</topic><topic>molecular electrostatic potentials</topic><topic>Polymers</topic><topic>topology analysis of electron density</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mengyu</creatorcontrib><creatorcontrib>Zeng, Yanli</creatorcontrib><creatorcontrib>Sun, Zheng</creatorcontrib><creatorcontrib>Meng, Lingpeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Mengyu</au><au>Zeng, Yanli</au><au>Sun, Zheng</au><au>Meng, Lingpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding based on the halogen‐bonded interactions</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2019-04-30</date><risdate>2019</risdate><volume>40</volume><issue>11</issue><spage>1219</spage><epage>1226</epage><pages>1219-1226</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>The “windmill” pattern cyclic halogen polymers (XBr)3 (X = Cl, Br, I) and (BrY)n (n = 3–6, Y = Cl, Br, I) have been investigated using the density functional theory. Due to the anisotropic distribution of its electron density, the halogen atom can form halogen‐bonded interactions by functioning as both electron donor sites and electron acceptor sites. For (XBr)3 (X = Cl, Br, I) trimers, the Cl···Cl interaction is the weakest, and the I···I interaction is the strongest. For (BrY)n (n = 3–6, Y = Cl, Br, I), the Br···Br halogen bonds are the strongest in (BrY)4 tetramers. We predict that the iodine‐4 synthon may allow creation of a self‐assembled island during crystal growth. The angle formed by the electron‐depleted sigma‐hole, the halogen atom and the electron‐rich equatorial belt perpendicular to the bond direction, together with the halogen‐bond angle, can be used to explain the geometries and strength of the halogen‐bond interactions. © 2018 Wiley Periodicals, Inc. M06‐2X calculations with def2‐TZVPD basis set was used to investigate the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30676664</pmid><doi>10.1002/jcc.25781</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7141-6172</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2019-04, Vol.40 (11), p.1219-1226
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2179436780
source Wiley Online Library Journals Frontfile Complete
subjects Bonding strength
Bromine
Crystal growth
density difference
Density functional theory
Electron density
halogen bond
Iodine
molecular electrostatic potentials
Polymers
topology analysis of electron density
Trimers
title Predicting the halogen‐n (n = 3–6) synthons to form the “windmill” pattern bonding based on the halogen‐bonded interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20halogen%E2%80%90n%20(n%20=%203%E2%80%936)%20synthons%20to%20form%20the%20%E2%80%9Cwindmill%E2%80%9D%20pattern%20bonding%20based%20on%20the%20halogen%E2%80%90bonded%20interactions&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Liu,%20Mengyu&rft.date=2019-04-30&rft.volume=40&rft.issue=11&rft.spage=1219&rft.epage=1226&rft.pages=1219-1226&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.25781&rft_dat=%3Cproquest_cross%3E2179436780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186929898&rft_id=info:pmid/30676664&rfr_iscdi=true