CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data

Ion mobility–mass spectrometry (IM–MS) has become an important addition to the structural biology toolbox, but separating closely related protein conformations remain challenging. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing iso-cross-sectional protein and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2019-02, Vol.91 (4), p.3147-3155
Hauptverfasser: Polasky, Daniel A, Dixit, Sugyan M, Fantin, Sarah M, Ruotolo, Brandon T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3155
container_issue 4
container_start_page 3147
container_title Analytical chemistry (Washington)
container_volume 91
creator Polasky, Daniel A
Dixit, Sugyan M
Fantin, Sarah M
Ruotolo, Brandon T
description Ion mobility–mass spectrometry (IM–MS) has become an important addition to the structural biology toolbox, but separating closely related protein conformations remain challenging. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing iso-cross-sectional protein and protein complex ions through their distinct unfolding pathways in the gas phase. The speed and sensitivity of CIU analyses, coupled with their information-rich data sets, have resulted in the rapid growth of CIU for applications, ranging from the structural assessment of protein complexes to the characterization of biotherapeutics. This growth has occurred despite a lag in the capabilities of informatics tools available to process the complex data sets generated by CIU experiments, resulting in laborious manual analysis remaining commonplace. Here, we present CIUSuite 2, a software suite designed to enable robust, automated analysis of CIU data across the complete range of current CIU applications and to support the implementation of CIU as a true high-throughput technique. CIUSuite 2 uses statistical fitting and modeling methods to reliably quantify features of interest within CIU data sets, particularly in data with poor signal quality that cannot be interpreted with existing analysis tools. By reducing the signal-to-noise requirements for handling CIU data, we are able to demonstrate reductions in acquisition time of up to 2 orders of magnitude over current workflows. CIUSuite 2 also provides the first automated system for classifying CIU fingerprints, enabling the next generation of ligand screening and structural analysis experiments to be accomplished in a high-throughput fashion.
doi_str_mv 10.1021/acs.analchem.8b05762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179431081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216259330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-a330952c54e9dfef30268ea9bead2266fbce92897abfafc3f76ef5be82022edc3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2Kqmxp36BClrj0kmU83jhJb2hLFyTUItE99BRNkjEblI2p7ajl7THahQMHLuPL9_8z_oT4omCuANUptWFOIw3thrfzsoG8MPhOzFSOkJmyxAMxAwCdYQFwKD6GcAegFCjzQRxqMKaslJ6JP8vL9c3UR5b4Tf7k_zFb8cieYu9GeeNs_EeepXVexg3Ls7TvIfRBOitXFLLrDQWW195F7ke5Hq0bun68ld8p0ifx3tIQ-PP-PRLrH-e_lxfZ1a_V5fLsKiNdmJimhirHNl9w1Vm2GtCUTFXD1CEaY5uWKyyrghpLttW2MGzzhksERO5afSS-7nrvvfs7cYj1tg8tDwON7KZQoyqqhVZQqoSevELv3OTTnxKFymBepWMStdhRrXcheLb1ve-35B9qBfWT-jqpr5_V13v1KXa8L5-aLXcvoWfXCYAd8BR_Wfxm5yOrE5Jm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216259330</pqid></control><display><type>article</type><title>CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data</title><source>ACS Publications</source><creator>Polasky, Daniel A ; Dixit, Sugyan M ; Fantin, Sarah M ; Ruotolo, Brandon T</creator><creatorcontrib>Polasky, Daniel A ; Dixit, Sugyan M ; Fantin, Sarah M ; Ruotolo, Brandon T</creatorcontrib><description>Ion mobility–mass spectrometry (IM–MS) has become an important addition to the structural biology toolbox, but separating closely related protein conformations remain challenging. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing iso-cross-sectional protein and protein complex ions through their distinct unfolding pathways in the gas phase. The speed and sensitivity of CIU analyses, coupled with their information-rich data sets, have resulted in the rapid growth of CIU for applications, ranging from the structural assessment of protein complexes to the characterization of biotherapeutics. This growth has occurred despite a lag in the capabilities of informatics tools available to process the complex data sets generated by CIU experiments, resulting in laborious manual analysis remaining commonplace. Here, we present CIUSuite 2, a software suite designed to enable robust, automated analysis of CIU data across the complete range of current CIU applications and to support the implementation of CIU as a true high-throughput technique. CIUSuite 2 uses statistical fitting and modeling methods to reliably quantify features of interest within CIU data sets, particularly in data with poor signal quality that cannot be interpreted with existing analysis tools. By reducing the signal-to-noise requirements for handling CIU data, we are able to demonstrate reductions in acquisition time of up to 2 orders of magnitude over current workflows. CIUSuite 2 also provides the first automated system for classifying CIU fingerprints, enabling the next generation of ligand screening and structural analysis experiments to be accomplished in a high-throughput fashion.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.8b05762</identifier><identifier>PMID: 30668913</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Automation ; Chemistry ; Computer programs ; Datasets ; Informatics ; Ionic mobility ; Mass spectrometry ; Mass spectroscopy ; Mathematical models ; Noise reduction ; Protein folding ; Proteins ; Sensitivity analysis ; Signal quality ; Software ; Software packages ; Statistical analysis ; Structural analysis ; Vapor phases</subject><ispartof>Analytical chemistry (Washington), 2019-02, Vol.91 (4), p.3147-3155</ispartof><rights>Copyright American Chemical Society Feb 19, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-a330952c54e9dfef30268ea9bead2266fbce92897abfafc3f76ef5be82022edc3</citedby><cites>FETCH-LOGICAL-a376t-a330952c54e9dfef30268ea9bead2266fbce92897abfafc3f76ef5be82022edc3</cites><orcidid>0000-0002-0515-1735 ; 0000-0002-6084-2328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.8b05762$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.8b05762$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30668913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Polasky, Daniel A</creatorcontrib><creatorcontrib>Dixit, Sugyan M</creatorcontrib><creatorcontrib>Fantin, Sarah M</creatorcontrib><creatorcontrib>Ruotolo, Brandon T</creatorcontrib><title>CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Ion mobility–mass spectrometry (IM–MS) has become an important addition to the structural biology toolbox, but separating closely related protein conformations remain challenging. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing iso-cross-sectional protein and protein complex ions through their distinct unfolding pathways in the gas phase. The speed and sensitivity of CIU analyses, coupled with their information-rich data sets, have resulted in the rapid growth of CIU for applications, ranging from the structural assessment of protein complexes to the characterization of biotherapeutics. This growth has occurred despite a lag in the capabilities of informatics tools available to process the complex data sets generated by CIU experiments, resulting in laborious manual analysis remaining commonplace. Here, we present CIUSuite 2, a software suite designed to enable robust, automated analysis of CIU data across the complete range of current CIU applications and to support the implementation of CIU as a true high-throughput technique. CIUSuite 2 uses statistical fitting and modeling methods to reliably quantify features of interest within CIU data sets, particularly in data with poor signal quality that cannot be interpreted with existing analysis tools. By reducing the signal-to-noise requirements for handling CIU data, we are able to demonstrate reductions in acquisition time of up to 2 orders of magnitude over current workflows. CIUSuite 2 also provides the first automated system for classifying CIU fingerprints, enabling the next generation of ligand screening and structural analysis experiments to be accomplished in a high-throughput fashion.</description><subject>Analytical chemistry</subject><subject>Automation</subject><subject>Chemistry</subject><subject>Computer programs</subject><subject>Datasets</subject><subject>Informatics</subject><subject>Ionic mobility</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematical models</subject><subject>Noise reduction</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Sensitivity analysis</subject><subject>Signal quality</subject><subject>Software</subject><subject>Software packages</subject><subject>Statistical analysis</subject><subject>Structural analysis</subject><subject>Vapor phases</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2Kqmxp36BClrj0kmU83jhJb2hLFyTUItE99BRNkjEblI2p7ajl7THahQMHLuPL9_8z_oT4omCuANUptWFOIw3thrfzsoG8MPhOzFSOkJmyxAMxAwCdYQFwKD6GcAegFCjzQRxqMKaslJ6JP8vL9c3UR5b4Tf7k_zFb8cieYu9GeeNs_EeepXVexg3Ls7TvIfRBOitXFLLrDQWW195F7ke5Hq0bun68ld8p0ifx3tIQ-PP-PRLrH-e_lxfZ1a_V5fLsKiNdmJimhirHNl9w1Vm2GtCUTFXD1CEaY5uWKyyrghpLttW2MGzzhksERO5afSS-7nrvvfs7cYj1tg8tDwON7KZQoyqqhVZQqoSevELv3OTTnxKFymBepWMStdhRrXcheLb1ve-35B9qBfWT-jqpr5_V13v1KXa8L5-aLXcvoWfXCYAd8BR_Wfxm5yOrE5Jm</recordid><startdate>20190219</startdate><enddate>20190219</enddate><creator>Polasky, Daniel A</creator><creator>Dixit, Sugyan M</creator><creator>Fantin, Sarah M</creator><creator>Ruotolo, Brandon T</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0515-1735</orcidid><orcidid>https://orcid.org/0000-0002-6084-2328</orcidid></search><sort><creationdate>20190219</creationdate><title>CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data</title><author>Polasky, Daniel A ; Dixit, Sugyan M ; Fantin, Sarah M ; Ruotolo, Brandon T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-a330952c54e9dfef30268ea9bead2266fbce92897abfafc3f76ef5be82022edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical chemistry</topic><topic>Automation</topic><topic>Chemistry</topic><topic>Computer programs</topic><topic>Datasets</topic><topic>Informatics</topic><topic>Ionic mobility</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematical models</topic><topic>Noise reduction</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Sensitivity analysis</topic><topic>Signal quality</topic><topic>Software</topic><topic>Software packages</topic><topic>Statistical analysis</topic><topic>Structural analysis</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polasky, Daniel A</creatorcontrib><creatorcontrib>Dixit, Sugyan M</creatorcontrib><creatorcontrib>Fantin, Sarah M</creatorcontrib><creatorcontrib>Ruotolo, Brandon T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polasky, Daniel A</au><au>Dixit, Sugyan M</au><au>Fantin, Sarah M</au><au>Ruotolo, Brandon T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2019-02-19</date><risdate>2019</risdate><volume>91</volume><issue>4</issue><spage>3147</spage><epage>3155</epage><pages>3147-3155</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Ion mobility–mass spectrometry (IM–MS) has become an important addition to the structural biology toolbox, but separating closely related protein conformations remain challenging. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing iso-cross-sectional protein and protein complex ions through their distinct unfolding pathways in the gas phase. The speed and sensitivity of CIU analyses, coupled with their information-rich data sets, have resulted in the rapid growth of CIU for applications, ranging from the structural assessment of protein complexes to the characterization of biotherapeutics. This growth has occurred despite a lag in the capabilities of informatics tools available to process the complex data sets generated by CIU experiments, resulting in laborious manual analysis remaining commonplace. Here, we present CIUSuite 2, a software suite designed to enable robust, automated analysis of CIU data across the complete range of current CIU applications and to support the implementation of CIU as a true high-throughput technique. CIUSuite 2 uses statistical fitting and modeling methods to reliably quantify features of interest within CIU data sets, particularly in data with poor signal quality that cannot be interpreted with existing analysis tools. By reducing the signal-to-noise requirements for handling CIU data, we are able to demonstrate reductions in acquisition time of up to 2 orders of magnitude over current workflows. CIUSuite 2 also provides the first automated system for classifying CIU fingerprints, enabling the next generation of ligand screening and structural analysis experiments to be accomplished in a high-throughput fashion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30668913</pmid><doi>10.1021/acs.analchem.8b05762</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0515-1735</orcidid><orcidid>https://orcid.org/0000-0002-6084-2328</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2019-02, Vol.91 (4), p.3147-3155
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2179431081
source ACS Publications
subjects Analytical chemistry
Automation
Chemistry
Computer programs
Datasets
Informatics
Ionic mobility
Mass spectrometry
Mass spectroscopy
Mathematical models
Noise reduction
Protein folding
Proteins
Sensitivity analysis
Signal quality
Software
Software packages
Statistical analysis
Structural analysis
Vapor phases
title CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CIUSuite%202:%20Next-Generation%20Software%20for%20the%20Analysis%20of%20Gas-Phase%20Protein%20Unfolding%20Data&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Polasky,%20Daniel%20A&rft.date=2019-02-19&rft.volume=91&rft.issue=4&rft.spage=3147&rft.epage=3155&rft.pages=3147-3155&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.8b05762&rft_dat=%3Cproquest_cross%3E2216259330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216259330&rft_id=info:pmid/30668913&rfr_iscdi=true