SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass
The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in gras...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2019-05, Vol.222 (3), p.1610-1623 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1623 |
---|---|
container_issue | 3 |
container_start_page | 1610 |
container_title | The New phytologist |
container_volume | 222 |
creator | Gou, Jiqing Tang, Chaorong Chen, Naichong Wang, Hui Debnath, Smriti Sun, Liang Flanagan, Amy Tang, Yuhong Jiang, Qingzhen Allen, Randy D. Wang, Zeng-Yu |
description | The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses.
Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes.
Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses.
Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release. |
doi_str_mv | 10.1111/nph.15712 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179429213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26675912</jstor_id><sourcerecordid>26675912</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3012-c578db0fbaa663fdb7321ef9c45a2e7608c9f4d23c6dca53c3d3208e4798d90a3</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoMouj4O_gFKwIuXajJp8zjK4gvWB6jgLWTTdLdLm65J6-J_b3TVg3OZge_3DcN8CB1SckZTnfvl_IwWgsIGGtGcq0xSJjbRiBCQGc_56w7ajXFBCFEFh220wwiXknE-QndPjxOBjS9xGiQObhlcdL7HBvvu3TW4arqVC7WfJW02NKavO49bZ-fG17HFtcdxVfd2Pgsmxn20VZkmuoOfvoderi6fxzfZ5OH6dnwxyRaMUMhsIWQ5JdXUGM5ZVU4FA-oqZfPCgBOcSKuqvARmeWlNwSwrGRDpcqFkqYhhe-h0vXcZurfBxV63dbSuaYx33RA1UKFyUEBZQk_-oYtuCD5dpwGIAAocVKKOf6hh2rpSL0PdmvChfx-VgPM1sKob9_GnU6K_EtApAf2dgL5_vPkekuNo7VjEvgt_DuBcFCrpn01VgKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207212629</pqid></control><display><type>article</type><title>SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley-Blackwell Open Access Backfiles (Open Access)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB Electronic Journals Library</source><creator>Gou, Jiqing ; Tang, Chaorong ; Chen, Naichong ; Wang, Hui ; Debnath, Smriti ; Sun, Liang ; Flanagan, Amy ; Tang, Yuhong ; Jiang, Qingzhen ; Allen, Randy D. ; Wang, Zeng-Yu</creator><creatorcontrib>Gou, Jiqing ; Tang, Chaorong ; Chen, Naichong ; Wang, Hui ; Debnath, Smriti ; Sun, Liang ; Flanagan, Amy ; Tang, Yuhong ; Jiang, Qingzhen ; Allen, Randy D. ; Wang, Zeng-Yu</creatorcontrib><description>The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses.
Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes.
Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses.
Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15712</identifier><identifier>PMID: 30688366</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Ageing ; Aging ; biofuel crop ; Biomass ; biomass yield ; Chromatin ; Control ; DNA ; DNA microarrays ; Down-Regulation - genetics ; Electron microscopy ; Extreme values ; Flowering ; flowering time ; Flowers - genetics ; Flowers - physiology ; Gene Expression Regulation, Plant ; Genes ; Genetic modification ; Grasses ; Immunoprecipitation ; Inflorescence - growth & development ; Inflorescence - ultrastructure ; inflorescence reversion ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; miRNA156 ; Nucleotide sequence ; Panicum - genetics ; Panicum - metabolism ; Panicum - physiology ; Panicum - ultrastructure ; Panicum virgatum ; PCR ; Phase transitions ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant reproductive structures ; Plant Stems - growth & development ; Plants (botany) ; Plants, Genetically Modified ; Polymerase chain reaction ; Protein Binding ; Regulators ; Regulatory mechanisms (biology) ; Reverse transcription ; Reversion ; Saccharides ; Scanning electron microscopy ; SQUAMOSA PROMOTER BINDING‐LIKE (SPL) ; Sugar ; Sugars - metabolism ; switchgrass ; Transcription</subject><ispartof>The New phytologist, 2019-05, Vol.222 (3), p.1610-1623</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6835-7917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26675912$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26675912$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27903,27904,45553,45554,46388,46812,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30688366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gou, Jiqing</creatorcontrib><creatorcontrib>Tang, Chaorong</creatorcontrib><creatorcontrib>Chen, Naichong</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Debnath, Smriti</creatorcontrib><creatorcontrib>Sun, Liang</creatorcontrib><creatorcontrib>Flanagan, Amy</creatorcontrib><creatorcontrib>Tang, Yuhong</creatorcontrib><creatorcontrib>Jiang, Qingzhen</creatorcontrib><creatorcontrib>Allen, Randy D.</creatorcontrib><creatorcontrib>Wang, Zeng-Yu</creatorcontrib><title>SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses.
Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes.
Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses.
Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.</description><subject>Ageing</subject><subject>Aging</subject><subject>biofuel crop</subject><subject>Biomass</subject><subject>biomass yield</subject><subject>Chromatin</subject><subject>Control</subject><subject>DNA</subject><subject>DNA microarrays</subject><subject>Down-Regulation - genetics</subject><subject>Electron microscopy</subject><subject>Extreme values</subject><subject>Flowering</subject><subject>flowering time</subject><subject>Flowers - genetics</subject><subject>Flowers - physiology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic modification</subject><subject>Grasses</subject><subject>Immunoprecipitation</subject><subject>Inflorescence - growth & development</subject><subject>Inflorescence - ultrastructure</subject><subject>inflorescence reversion</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>miRNA156</subject><subject>Nucleotide sequence</subject><subject>Panicum - genetics</subject><subject>Panicum - metabolism</subject><subject>Panicum - physiology</subject><subject>Panicum - ultrastructure</subject><subject>Panicum virgatum</subject><subject>PCR</subject><subject>Phase transitions</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant reproductive structures</subject><subject>Plant Stems - growth & development</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified</subject><subject>Polymerase chain reaction</subject><subject>Protein Binding</subject><subject>Regulators</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reverse transcription</subject><subject>Reversion</subject><subject>Saccharides</subject><subject>Scanning electron microscopy</subject><subject>SQUAMOSA PROMOTER BINDING‐LIKE (SPL)</subject><subject>Sugar</subject><subject>Sugars - metabolism</subject><subject>switchgrass</subject><subject>Transcription</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLxDAQxoMouj4O_gFKwIuXajJp8zjK4gvWB6jgLWTTdLdLm65J6-J_b3TVg3OZge_3DcN8CB1SckZTnfvl_IwWgsIGGtGcq0xSJjbRiBCQGc_56w7ajXFBCFEFh220wwiXknE-QndPjxOBjS9xGiQObhlcdL7HBvvu3TW4arqVC7WfJW02NKavO49bZ-fG17HFtcdxVfd2Pgsmxn20VZkmuoOfvoderi6fxzfZ5OH6dnwxyRaMUMhsIWQ5JdXUGM5ZVU4FA-oqZfPCgBOcSKuqvARmeWlNwSwrGRDpcqFkqYhhe-h0vXcZurfBxV63dbSuaYx33RA1UKFyUEBZQk_-oYtuCD5dpwGIAAocVKKOf6hh2rpSL0PdmvChfx-VgPM1sKob9_GnU6K_EtApAf2dgL5_vPkekuNo7VjEvgt_DuBcFCrpn01VgKE</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Gou, Jiqing</creator><creator>Tang, Chaorong</creator><creator>Chen, Naichong</creator><creator>Wang, Hui</creator><creator>Debnath, Smriti</creator><creator>Sun, Liang</creator><creator>Flanagan, Amy</creator><creator>Tang, Yuhong</creator><creator>Jiang, Qingzhen</creator><creator>Allen, Randy D.</creator><creator>Wang, Zeng-Yu</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6835-7917</orcidid></search><sort><creationdate>20190501</creationdate><title>SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass</title><author>Gou, Jiqing ; Tang, Chaorong ; Chen, Naichong ; Wang, Hui ; Debnath, Smriti ; Sun, Liang ; Flanagan, Amy ; Tang, Yuhong ; Jiang, Qingzhen ; Allen, Randy D. ; Wang, Zeng-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3012-c578db0fbaa663fdb7321ef9c45a2e7608c9f4d23c6dca53c3d3208e4798d90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ageing</topic><topic>Aging</topic><topic>biofuel crop</topic><topic>Biomass</topic><topic>biomass yield</topic><topic>Chromatin</topic><topic>Control</topic><topic>DNA</topic><topic>DNA microarrays</topic><topic>Down-Regulation - genetics</topic><topic>Electron microscopy</topic><topic>Extreme values</topic><topic>Flowering</topic><topic>flowering time</topic><topic>Flowers - genetics</topic><topic>Flowers - physiology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic modification</topic><topic>Grasses</topic><topic>Immunoprecipitation</topic><topic>Inflorescence - growth & development</topic><topic>Inflorescence - ultrastructure</topic><topic>inflorescence reversion</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>miRNA156</topic><topic>Nucleotide sequence</topic><topic>Panicum - genetics</topic><topic>Panicum - metabolism</topic><topic>Panicum - physiology</topic><topic>Panicum - ultrastructure</topic><topic>Panicum virgatum</topic><topic>PCR</topic><topic>Phase transitions</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant reproductive structures</topic><topic>Plant Stems - growth & development</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified</topic><topic>Polymerase chain reaction</topic><topic>Protein Binding</topic><topic>Regulators</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reverse transcription</topic><topic>Reversion</topic><topic>Saccharides</topic><topic>Scanning electron microscopy</topic><topic>SQUAMOSA PROMOTER BINDING‐LIKE (SPL)</topic><topic>Sugar</topic><topic>Sugars - metabolism</topic><topic>switchgrass</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Jiqing</creatorcontrib><creatorcontrib>Tang, Chaorong</creatorcontrib><creatorcontrib>Chen, Naichong</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Debnath, Smriti</creatorcontrib><creatorcontrib>Sun, Liang</creatorcontrib><creatorcontrib>Flanagan, Amy</creatorcontrib><creatorcontrib>Tang, Yuhong</creatorcontrib><creatorcontrib>Jiang, Qingzhen</creatorcontrib><creatorcontrib>Allen, Randy D.</creatorcontrib><creatorcontrib>Wang, Zeng-Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Jiqing</au><au>Tang, Chaorong</au><au>Chen, Naichong</au><au>Wang, Hui</au><au>Debnath, Smriti</au><au>Sun, Liang</au><au>Flanagan, Amy</au><au>Tang, Yuhong</au><au>Jiang, Qingzhen</au><au>Allen, Randy D.</au><au>Wang, Zeng-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>222</volume><issue>3</issue><spage>1610</spage><epage>1623</epage><pages>1610-1623</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses.
Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes.
Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses.
Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30688366</pmid><doi>10.1111/nph.15712</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6835-7917</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2019-05, Vol.222 (3), p.1610-1623 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179429213 |
source | Jstor Complete Legacy; MEDLINE; Wiley-Blackwell Open Access Backfiles (Open Access); Wiley Online Library Journals Frontfile Complete; EZB Electronic Journals Library |
subjects | Ageing Aging biofuel crop Biomass biomass yield Chromatin Control DNA DNA microarrays Down-Regulation - genetics Electron microscopy Extreme values Flowering flowering time Flowers - genetics Flowers - physiology Gene Expression Regulation, Plant Genes Genetic modification Grasses Immunoprecipitation Inflorescence - growth & development Inflorescence - ultrastructure inflorescence reversion MicroRNAs - genetics MicroRNAs - metabolism miRNA miRNA156 Nucleotide sequence Panicum - genetics Panicum - metabolism Panicum - physiology Panicum - ultrastructure Panicum virgatum PCR Phase transitions Plant Proteins - genetics Plant Proteins - metabolism Plant reproductive structures Plant Stems - growth & development Plants (botany) Plants, Genetically Modified Polymerase chain reaction Protein Binding Regulators Regulatory mechanisms (biology) Reverse transcription Reversion Saccharides Scanning electron microscopy SQUAMOSA PROMOTER BINDING‐LIKE (SPL) Sugar Sugars - metabolism switchgrass Transcription |
title | SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPL7%20and%20SPL8%20represent%20a%20novel%20flowering%20regulation%20mechanism%20in%20switchgrass&rft.jtitle=The%20New%20phytologist&rft.au=Gou,%20Jiqing&rft.date=2019-05-01&rft.volume=222&rft.issue=3&rft.spage=1610&rft.epage=1623&rft.pages=1610-1623&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15712&rft_dat=%3Cjstor_proqu%3E26675912%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207212629&rft_id=info:pmid/30688366&rft_jstor_id=26675912&rfr_iscdi=true |