SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass

The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in gras...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2019-05, Vol.222 (3), p.1610-1623
Hauptverfasser: Gou, Jiqing, Tang, Chaorong, Chen, Naichong, Wang, Hui, Debnath, Smriti, Sun, Liang, Flanagan, Amy, Tang, Yuhong, Jiang, Qingzhen, Allen, Randy D., Wang, Zeng-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1623
container_issue 3
container_start_page 1610
container_title The New phytologist
container_volume 222
creator Gou, Jiqing
Tang, Chaorong
Chen, Naichong
Wang, Hui
Debnath, Smriti
Sun, Liang
Flanagan, Amy
Tang, Yuhong
Jiang, Qingzhen
Allen, Randy D.
Wang, Zeng-Yu
description The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.
doi_str_mv 10.1111/nph.15712
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179429213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26675912</jstor_id><sourcerecordid>26675912</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3012-c578db0fbaa663fdb7321ef9c45a2e7608c9f4d23c6dca53c3d3208e4798d90a3</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoMouj4O_gFKwIuXajJp8zjK4gvWB6jgLWTTdLdLm65J6-J_b3TVg3OZge_3DcN8CB1SckZTnfvl_IwWgsIGGtGcq0xSJjbRiBCQGc_56w7ajXFBCFEFh220wwiXknE-QndPjxOBjS9xGiQObhlcdL7HBvvu3TW4arqVC7WfJW02NKavO49bZ-fG17HFtcdxVfd2Pgsmxn20VZkmuoOfvoderi6fxzfZ5OH6dnwxyRaMUMhsIWQ5JdXUGM5ZVU4FA-oqZfPCgBOcSKuqvARmeWlNwSwrGRDpcqFkqYhhe-h0vXcZurfBxV63dbSuaYx33RA1UKFyUEBZQk_-oYtuCD5dpwGIAAocVKKOf6hh2rpSL0PdmvChfx-VgPM1sKob9_GnU6K_EtApAf2dgL5_vPkekuNo7VjEvgt_DuBcFCrpn01VgKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207212629</pqid></control><display><type>article</type><title>SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley-Blackwell Open Access Backfiles (Open Access)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB Electronic Journals Library</source><creator>Gou, Jiqing ; Tang, Chaorong ; Chen, Naichong ; Wang, Hui ; Debnath, Smriti ; Sun, Liang ; Flanagan, Amy ; Tang, Yuhong ; Jiang, Qingzhen ; Allen, Randy D. ; Wang, Zeng-Yu</creator><creatorcontrib>Gou, Jiqing ; Tang, Chaorong ; Chen, Naichong ; Wang, Hui ; Debnath, Smriti ; Sun, Liang ; Flanagan, Amy ; Tang, Yuhong ; Jiang, Qingzhen ; Allen, Randy D. ; Wang, Zeng-Yu</creatorcontrib><description>The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15712</identifier><identifier>PMID: 30688366</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Ageing ; Aging ; biofuel crop ; Biomass ; biomass yield ; Chromatin ; Control ; DNA ; DNA microarrays ; Down-Regulation - genetics ; Electron microscopy ; Extreme values ; Flowering ; flowering time ; Flowers - genetics ; Flowers - physiology ; Gene Expression Regulation, Plant ; Genes ; Genetic modification ; Grasses ; Immunoprecipitation ; Inflorescence - growth &amp; development ; Inflorescence - ultrastructure ; inflorescence reversion ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; miRNA156 ; Nucleotide sequence ; Panicum - genetics ; Panicum - metabolism ; Panicum - physiology ; Panicum - ultrastructure ; Panicum virgatum ; PCR ; Phase transitions ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant reproductive structures ; Plant Stems - growth &amp; development ; Plants (botany) ; Plants, Genetically Modified ; Polymerase chain reaction ; Protein Binding ; Regulators ; Regulatory mechanisms (biology) ; Reverse transcription ; Reversion ; Saccharides ; Scanning electron microscopy ; SQUAMOSA PROMOTER BINDING‐LIKE (SPL) ; Sugar ; Sugars - metabolism ; switchgrass ; Transcription</subject><ispartof>The New phytologist, 2019-05, Vol.222 (3), p.1610-1623</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6835-7917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26675912$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26675912$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27903,27904,45553,45554,46388,46812,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30688366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gou, Jiqing</creatorcontrib><creatorcontrib>Tang, Chaorong</creatorcontrib><creatorcontrib>Chen, Naichong</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Debnath, Smriti</creatorcontrib><creatorcontrib>Sun, Liang</creatorcontrib><creatorcontrib>Flanagan, Amy</creatorcontrib><creatorcontrib>Tang, Yuhong</creatorcontrib><creatorcontrib>Jiang, Qingzhen</creatorcontrib><creatorcontrib>Allen, Randy D.</creatorcontrib><creatorcontrib>Wang, Zeng-Yu</creatorcontrib><title>SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.</description><subject>Ageing</subject><subject>Aging</subject><subject>biofuel crop</subject><subject>Biomass</subject><subject>biomass yield</subject><subject>Chromatin</subject><subject>Control</subject><subject>DNA</subject><subject>DNA microarrays</subject><subject>Down-Regulation - genetics</subject><subject>Electron microscopy</subject><subject>Extreme values</subject><subject>Flowering</subject><subject>flowering time</subject><subject>Flowers - genetics</subject><subject>Flowers - physiology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic modification</subject><subject>Grasses</subject><subject>Immunoprecipitation</subject><subject>Inflorescence - growth &amp; development</subject><subject>Inflorescence - ultrastructure</subject><subject>inflorescence reversion</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>miRNA156</subject><subject>Nucleotide sequence</subject><subject>Panicum - genetics</subject><subject>Panicum - metabolism</subject><subject>Panicum - physiology</subject><subject>Panicum - ultrastructure</subject><subject>Panicum virgatum</subject><subject>PCR</subject><subject>Phase transitions</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant reproductive structures</subject><subject>Plant Stems - growth &amp; development</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified</subject><subject>Polymerase chain reaction</subject><subject>Protein Binding</subject><subject>Regulators</subject><subject>Regulatory mechanisms (biology)</subject><subject>Reverse transcription</subject><subject>Reversion</subject><subject>Saccharides</subject><subject>Scanning electron microscopy</subject><subject>SQUAMOSA PROMOTER BINDING‐LIKE (SPL)</subject><subject>Sugar</subject><subject>Sugars - metabolism</subject><subject>switchgrass</subject><subject>Transcription</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLxDAQxoMouj4O_gFKwIuXajJp8zjK4gvWB6jgLWTTdLdLm65J6-J_b3TVg3OZge_3DcN8CB1SckZTnfvl_IwWgsIGGtGcq0xSJjbRiBCQGc_56w7ajXFBCFEFh220wwiXknE-QndPjxOBjS9xGiQObhlcdL7HBvvu3TW4arqVC7WfJW02NKavO49bZ-fG17HFtcdxVfd2Pgsmxn20VZkmuoOfvoderi6fxzfZ5OH6dnwxyRaMUMhsIWQ5JdXUGM5ZVU4FA-oqZfPCgBOcSKuqvARmeWlNwSwrGRDpcqFkqYhhe-h0vXcZurfBxV63dbSuaYx33RA1UKFyUEBZQk_-oYtuCD5dpwGIAAocVKKOf6hh2rpSL0PdmvChfx-VgPM1sKob9_GnU6K_EtApAf2dgL5_vPkekuNo7VjEvgt_DuBcFCrpn01VgKE</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Gou, Jiqing</creator><creator>Tang, Chaorong</creator><creator>Chen, Naichong</creator><creator>Wang, Hui</creator><creator>Debnath, Smriti</creator><creator>Sun, Liang</creator><creator>Flanagan, Amy</creator><creator>Tang, Yuhong</creator><creator>Jiang, Qingzhen</creator><creator>Allen, Randy D.</creator><creator>Wang, Zeng-Yu</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6835-7917</orcidid></search><sort><creationdate>20190501</creationdate><title>SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass</title><author>Gou, Jiqing ; Tang, Chaorong ; Chen, Naichong ; Wang, Hui ; Debnath, Smriti ; Sun, Liang ; Flanagan, Amy ; Tang, Yuhong ; Jiang, Qingzhen ; Allen, Randy D. ; Wang, Zeng-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3012-c578db0fbaa663fdb7321ef9c45a2e7608c9f4d23c6dca53c3d3208e4798d90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ageing</topic><topic>Aging</topic><topic>biofuel crop</topic><topic>Biomass</topic><topic>biomass yield</topic><topic>Chromatin</topic><topic>Control</topic><topic>DNA</topic><topic>DNA microarrays</topic><topic>Down-Regulation - genetics</topic><topic>Electron microscopy</topic><topic>Extreme values</topic><topic>Flowering</topic><topic>flowering time</topic><topic>Flowers - genetics</topic><topic>Flowers - physiology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic modification</topic><topic>Grasses</topic><topic>Immunoprecipitation</topic><topic>Inflorescence - growth &amp; development</topic><topic>Inflorescence - ultrastructure</topic><topic>inflorescence reversion</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>miRNA156</topic><topic>Nucleotide sequence</topic><topic>Panicum - genetics</topic><topic>Panicum - metabolism</topic><topic>Panicum - physiology</topic><topic>Panicum - ultrastructure</topic><topic>Panicum virgatum</topic><topic>PCR</topic><topic>Phase transitions</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant reproductive structures</topic><topic>Plant Stems - growth &amp; development</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified</topic><topic>Polymerase chain reaction</topic><topic>Protein Binding</topic><topic>Regulators</topic><topic>Regulatory mechanisms (biology)</topic><topic>Reverse transcription</topic><topic>Reversion</topic><topic>Saccharides</topic><topic>Scanning electron microscopy</topic><topic>SQUAMOSA PROMOTER BINDING‐LIKE (SPL)</topic><topic>Sugar</topic><topic>Sugars - metabolism</topic><topic>switchgrass</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Jiqing</creatorcontrib><creatorcontrib>Tang, Chaorong</creatorcontrib><creatorcontrib>Chen, Naichong</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Debnath, Smriti</creatorcontrib><creatorcontrib>Sun, Liang</creatorcontrib><creatorcontrib>Flanagan, Amy</creatorcontrib><creatorcontrib>Tang, Yuhong</creatorcontrib><creatorcontrib>Jiang, Qingzhen</creatorcontrib><creatorcontrib>Allen, Randy D.</creatorcontrib><creatorcontrib>Wang, Zeng-Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Jiqing</au><au>Tang, Chaorong</au><au>Chen, Naichong</au><au>Wang, Hui</au><au>Debnath, Smriti</au><au>Sun, Liang</au><au>Flanagan, Amy</au><au>Tang, Yuhong</au><au>Jiang, Qingzhen</au><au>Allen, Randy D.</au><au>Wang, Zeng-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>222</volume><issue>3</issue><spage>1610</spage><epage>1623</epage><pages>1610-1623</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The aging pathway in flowering regulation is controlled mainly by microRNA156 (miR156). Studies in Arabidopsis thaliana reveal that nine miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) genes are involved in the control of flowering. However, the roles of SPLs in flowering remain elusive in grasses. Inflorescence development in switchgrass was characterized using scanning electron microscopy (SEM). Microarray, quantitative reverse transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP)-PCR and EMSA were used to identify regulators of phase transition and flowering. Gene function was characterized by downregulation and overexpression of the target genes. Overexpression of SPL7 and SPL8 promotes flowering, whereas downregulation of individual genes moderately delays flowering. Simultaneous downregulation of SPL7/SPL8 results in extremely delayed or nonflowering plants. Furthermore, downregulation of both genes leads to a vegetative-to-reproductive reversion in the inflorescence, a phenomenon that has not been reported in any other grasses. Detailed analyses demonstrate that SPL7 and SPL8 induce phase transition and flowering in grasses by directly upregulating SEPALLATA3 (SEP3) and MADS32. Thus, the SPL7/8 pathway represents a novel regulatory mechanism in grasses that is largely different from that in Arabidopsis. Additionally, genetic modification of SPL7 and SPL8 results in much taller plants with significantly increased biomass yield and sugar release.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30688366</pmid><doi>10.1111/nph.15712</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6835-7917</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2019-05, Vol.222 (3), p.1610-1623
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2179429213
source Jstor Complete Legacy; MEDLINE; Wiley-Blackwell Open Access Backfiles (Open Access); Wiley Online Library Journals Frontfile Complete; EZB Electronic Journals Library
subjects Ageing
Aging
biofuel crop
Biomass
biomass yield
Chromatin
Control
DNA
DNA microarrays
Down-Regulation - genetics
Electron microscopy
Extreme values
Flowering
flowering time
Flowers - genetics
Flowers - physiology
Gene Expression Regulation, Plant
Genes
Genetic modification
Grasses
Immunoprecipitation
Inflorescence - growth & development
Inflorescence - ultrastructure
inflorescence reversion
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
miRNA156
Nucleotide sequence
Panicum - genetics
Panicum - metabolism
Panicum - physiology
Panicum - ultrastructure
Panicum virgatum
PCR
Phase transitions
Plant Proteins - genetics
Plant Proteins - metabolism
Plant reproductive structures
Plant Stems - growth & development
Plants (botany)
Plants, Genetically Modified
Polymerase chain reaction
Protein Binding
Regulators
Regulatory mechanisms (biology)
Reverse transcription
Reversion
Saccharides
Scanning electron microscopy
SQUAMOSA PROMOTER BINDING‐LIKE (SPL)
Sugar
Sugars - metabolism
switchgrass
Transcription
title SPL7 and SPL8 represent a novel flowering regulation mechanism in switchgrass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPL7%20and%20SPL8%20represent%20a%20novel%20flowering%20regulation%20mechanism%20in%20switchgrass&rft.jtitle=The%20New%20phytologist&rft.au=Gou,%20Jiqing&rft.date=2019-05-01&rft.volume=222&rft.issue=3&rft.spage=1610&rft.epage=1623&rft.pages=1610-1623&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15712&rft_dat=%3Cjstor_proqu%3E26675912%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207212629&rft_id=info:pmid/30688366&rft_jstor_id=26675912&rfr_iscdi=true