An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples

Certain blood-borne biomarkers offer a potent methodology for understanding the risk of cardiovascular diseases (CVDs) with clinicians generally advocating the use of multiple biomarkers for proper risk assessment of CVDs. Herein four such CVDs biomarkers- C-reactive protein (CRP), N-terminal pro b-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2019-03, Vol.129, p.155-163
Hauptverfasser: Sinha, Anirban, Tai, Tse-Yu, Li, Kuang-Hsien, Gopinathan, Priya, Chung, Yi-Da, Sarangadharan, Indu, Ma, Hsi-Pin, Huang, Po-Chiun, Shiesh, Shu-Chu, Wang, Yu-Lin, Lee, Gwo-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Certain blood-borne biomarkers offer a potent methodology for understanding the risk of cardiovascular diseases (CVDs) with clinicians generally advocating the use of multiple biomarkers for proper risk assessment of CVDs. Herein four such CVDs biomarkers- C-reactive protein (CRP), N-terminal pro b-type natriuretic peptide (NT-proBNP), cardiac troponin I (cTnI), and fibrinogen- were rapidly (5 min) analyzed from clinical samples (~ 4 µL) on an integrated microfluidic platform equipped with 1) immobilized highly specific aptamer probes and 2) field-effect transistor (FET)-based sensor arrays. The calibration curve from the FET sensor arrays showed good agreement in the physiological concentration ranges for CRP (0.1–50 mg/L), NT-proBNP (50–10,000 pg/mL), cTnI (1–10,000 pg/mL), and fibrinogen (0.1–5 mg/mL). The developed prototype of this fully automated portable device requires minimal reagent and sample inputs and consequently shows great promise for next-generation point-of-care devices assaying multiple CVDs biomarkers in clinical samples. •An integrated microfluidic platform equipped with 1) immobilized aptamer probes and 2) field-effect transistor (FET)-based sensor arrays has been presented in this study.•Four biomarkers for cardiovascular diseases were rapidly (5 min) analyzed from clinical samples (~ 4 µL).•The developed prototype of this fully automated portable device requires minimal reagent and sample inputs and consequently shows great promise for next-generation point-of-care devices assaying multiple CVDs biomarkers in patient serum.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2019.01.001