Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features

Summary Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2019-04, Vol.21 (4), p.1331-1343
Hauptverfasser: Alessandri, Giulia, Milani, Christian, Mancabelli, Leonardo, Mangifesta, Marta, Lugli, Gabriele A., Viappiani, Alice, Duranti, Sabrina, Turroni, Francesca, Ossiprandi, Maria C., van Sinderen, Douwe, Ventura, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1343
container_issue 4
container_start_page 1331
container_title Environmental microbiology
container_volume 21
creator Alessandri, Giulia
Milani, Christian
Mancabelli, Leonardo
Mangifesta, Marta
Lugli, Gabriele A.
Viappiani, Alice
Duranti, Sabrina
Turroni, Francesca
Ossiprandi, Maria C.
van Sinderen, Douwe
Ventura, Marco
description Summary Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high‐protein or high‐carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.
doi_str_mv 10.1111/1462-2920.14540
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179426003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204482822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3710-260f647af90bc2e12c25342d0872fb282e2087fce664f1f03e841cab5e5071f23</originalsourceid><addsrcrecordid>eNqFkb9PAyEUx4nR2Fqd3QyJi4O1wHE_6maaqk3auOhMOPpoae6OenDR_vdyvdrBRRYe5MPnvXxB6JqSBxrWiPKEDdmYhSOPOTlB_ePN6bGmrIcunNsQQtMoJeeoF5EkI1ma9tF2AV6uoLKlUXhpnAPlja2w1divAStZmQrwqvE4ALXNjfXyEZvKmdXau1B4i738tnvBPS6DLbdFcMlqiavG16bVyQJrkL6pwV2iMy0LB1eHfYA-nqfvk9fh_O1lNnmaD1WUUjJkCdEJT6Uek1wxoEyxOOJsGaZmOmcZAxZKrSBJuKaaRJBxqmQeQ0xSqlk0QHedd1vbzwacF6VxCopCVmAbJxhNxzx0IVFAb_-gG9vUYehAMcJ5Ftq1wlFHhRicq0GLbW1KWe8EJaL9DNHGLdroxf4zwoubg7fJS1ge-d_0AxB3wJcpYPefT0wXs078Azhok7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204482822</pqid></control><display><type>article</type><title>Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Alessandri, Giulia ; Milani, Christian ; Mancabelli, Leonardo ; Mangifesta, Marta ; Lugli, Gabriele A. ; Viappiani, Alice ; Duranti, Sabrina ; Turroni, Francesca ; Ossiprandi, Maria C. ; van Sinderen, Douwe ; Ventura, Marco</creator><creatorcontrib>Alessandri, Giulia ; Milani, Christian ; Mancabelli, Leonardo ; Mangifesta, Marta ; Lugli, Gabriele A. ; Viappiani, Alice ; Duranti, Sabrina ; Turroni, Francesca ; Ossiprandi, Maria C. ; van Sinderen, Douwe ; Ventura, Marco</creatorcontrib><description>Summary Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high‐protein or high‐carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14540</identifier><identifier>PMID: 30680877</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bifidobacterium - genetics ; Biodiversity ; Biological evolution ; Bones ; Canidae ; Carbohydrates ; Cohabitation ; Comparative analysis ; Composition ; Digestive system ; Dogs ; Dogs - microbiology ; Domestication ; Feces - microbiology ; Food ; Foods ; Gastrointestinal Microbiome - genetics ; Gastrointestinal tract ; Genomes ; Intestinal flora ; Intestinal microflora ; Intestine ; Metabolism ; Metagenome - genetics ; Metagenomics ; Microbiota ; Microorganisms ; Nutritional Physiological Phenomena ; Proteins ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Spacer ; Taxonomy ; Wolves ; Wolves - microbiology</subject><ispartof>Environmental microbiology, 2019-04, Vol.21 (4), p.1331-1343</ispartof><rights>2019 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2019 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3710-260f647af90bc2e12c25342d0872fb282e2087fce664f1f03e841cab5e5071f23</citedby><cites>FETCH-LOGICAL-c3710-260f647af90bc2e12c25342d0872fb282e2087fce664f1f03e841cab5e5071f23</cites><orcidid>0000-0002-4875-4560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14540$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14540$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30680877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alessandri, Giulia</creatorcontrib><creatorcontrib>Milani, Christian</creatorcontrib><creatorcontrib>Mancabelli, Leonardo</creatorcontrib><creatorcontrib>Mangifesta, Marta</creatorcontrib><creatorcontrib>Lugli, Gabriele A.</creatorcontrib><creatorcontrib>Viappiani, Alice</creatorcontrib><creatorcontrib>Duranti, Sabrina</creatorcontrib><creatorcontrib>Turroni, Francesca</creatorcontrib><creatorcontrib>Ossiprandi, Maria C.</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><creatorcontrib>Ventura, Marco</creatorcontrib><title>Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high‐protein or high‐carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bifidobacterium - genetics</subject><subject>Biodiversity</subject><subject>Biological evolution</subject><subject>Bones</subject><subject>Canidae</subject><subject>Carbohydrates</subject><subject>Cohabitation</subject><subject>Comparative analysis</subject><subject>Composition</subject><subject>Digestive system</subject><subject>Dogs</subject><subject>Dogs - microbiology</subject><subject>Domestication</subject><subject>Feces - microbiology</subject><subject>Food</subject><subject>Foods</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal tract</subject><subject>Genomes</subject><subject>Intestinal flora</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Metabolism</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Nutritional Physiological Phenomena</subject><subject>Proteins</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Spacer</subject><subject>Taxonomy</subject><subject>Wolves</subject><subject>Wolves - microbiology</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb9PAyEUx4nR2Fqd3QyJi4O1wHE_6maaqk3auOhMOPpoae6OenDR_vdyvdrBRRYe5MPnvXxB6JqSBxrWiPKEDdmYhSOPOTlB_ePN6bGmrIcunNsQQtMoJeeoF5EkI1ma9tF2AV6uoLKlUXhpnAPlja2w1divAStZmQrwqvE4ALXNjfXyEZvKmdXau1B4i738tnvBPS6DLbdFcMlqiavG16bVyQJrkL6pwV2iMy0LB1eHfYA-nqfvk9fh_O1lNnmaD1WUUjJkCdEJT6Uek1wxoEyxOOJsGaZmOmcZAxZKrSBJuKaaRJBxqmQeQ0xSqlk0QHedd1vbzwacF6VxCopCVmAbJxhNxzx0IVFAb_-gG9vUYehAMcJ5Ftq1wlFHhRicq0GLbW1KWe8EJaL9DNHGLdroxf4zwoubg7fJS1ge-d_0AxB3wJcpYPefT0wXs078Azhok7Y</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Alessandri, Giulia</creator><creator>Milani, Christian</creator><creator>Mancabelli, Leonardo</creator><creator>Mangifesta, Marta</creator><creator>Lugli, Gabriele A.</creator><creator>Viappiani, Alice</creator><creator>Duranti, Sabrina</creator><creator>Turroni, Francesca</creator><creator>Ossiprandi, Maria C.</creator><creator>van Sinderen, Douwe</creator><creator>Ventura, Marco</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4875-4560</orcidid></search><sort><creationdate>201904</creationdate><title>Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features</title><author>Alessandri, Giulia ; Milani, Christian ; Mancabelli, Leonardo ; Mangifesta, Marta ; Lugli, Gabriele A. ; Viappiani, Alice ; Duranti, Sabrina ; Turroni, Francesca ; Ossiprandi, Maria C. ; van Sinderen, Douwe ; Ventura, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3710-260f647af90bc2e12c25342d0872fb282e2087fce664f1f03e841cab5e5071f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bifidobacterium - genetics</topic><topic>Biodiversity</topic><topic>Biological evolution</topic><topic>Bones</topic><topic>Canidae</topic><topic>Carbohydrates</topic><topic>Cohabitation</topic><topic>Comparative analysis</topic><topic>Composition</topic><topic>Digestive system</topic><topic>Dogs</topic><topic>Dogs - microbiology</topic><topic>Domestication</topic><topic>Feces - microbiology</topic><topic>Food</topic><topic>Foods</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal tract</topic><topic>Genomes</topic><topic>Intestinal flora</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Metabolism</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Nutritional Physiological Phenomena</topic><topic>Proteins</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Spacer</topic><topic>Taxonomy</topic><topic>Wolves</topic><topic>Wolves - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessandri, Giulia</creatorcontrib><creatorcontrib>Milani, Christian</creatorcontrib><creatorcontrib>Mancabelli, Leonardo</creatorcontrib><creatorcontrib>Mangifesta, Marta</creatorcontrib><creatorcontrib>Lugli, Gabriele A.</creatorcontrib><creatorcontrib>Viappiani, Alice</creatorcontrib><creatorcontrib>Duranti, Sabrina</creatorcontrib><creatorcontrib>Turroni, Francesca</creatorcontrib><creatorcontrib>Ossiprandi, Maria C.</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><creatorcontrib>Ventura, Marco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessandri, Giulia</au><au>Milani, Christian</au><au>Mancabelli, Leonardo</au><au>Mangifesta, Marta</au><au>Lugli, Gabriele A.</au><au>Viappiani, Alice</au><au>Duranti, Sabrina</au><au>Turroni, Francesca</au><au>Ossiprandi, Maria C.</au><au>van Sinderen, Douwe</au><au>Ventura, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>1331</spage><epage>1343</epage><pages>1331-1343</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high‐protein or high‐carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30680877</pmid><doi>10.1111/1462-2920.14540</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4875-4560</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2019-04, Vol.21 (4), p.1331-1343
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_miscellaneous_2179426003
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Animals
Bacteria
Bacteria - classification
Bacteria - genetics
Bifidobacterium - genetics
Biodiversity
Biological evolution
Bones
Canidae
Carbohydrates
Cohabitation
Comparative analysis
Composition
Digestive system
Dogs
Dogs - microbiology
Domestication
Feces - microbiology
Food
Foods
Gastrointestinal Microbiome - genetics
Gastrointestinal tract
Genomes
Intestinal flora
Intestinal microflora
Intestine
Metabolism
Metagenome - genetics
Metagenomics
Microbiota
Microorganisms
Nutritional Physiological Phenomena
Proteins
RNA, Ribosomal, 16S - genetics
rRNA 16S
Spacer
Taxonomy
Wolves
Wolves - microbiology
title Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metagenomic%20dissection%20of%20the%20canine%20gut%20microbiota:%20insights%20into%20taxonomic,%20metabolic%20and%20nutritional%20features&rft.jtitle=Environmental%20microbiology&rft.au=Alessandri,%20Giulia&rft.date=2019-04&rft.volume=21&rft.issue=4&rft.spage=1331&rft.epage=1343&rft.pages=1331-1343&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14540&rft_dat=%3Cproquest_cross%3E2204482822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204482822&rft_id=info:pmid/30680877&rfr_iscdi=true