Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features
Summary Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wil...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2019-04, Vol.21 (4), p.1331-1343 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1343 |
---|---|
container_issue | 4 |
container_start_page | 1331 |
container_title | Environmental microbiology |
container_volume | 21 |
creator | Alessandri, Giulia Milani, Christian Mancabelli, Leonardo Mangifesta, Marta Lugli, Gabriele A. Viappiani, Alice Duranti, Sabrina Turroni, Francesca Ossiprandi, Maria C. van Sinderen, Douwe Ventura, Marco |
description | Summary
Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high‐protein or high‐carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut. |
doi_str_mv | 10.1111/1462-2920.14540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179426003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2204482822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3710-260f647af90bc2e12c25342d0872fb282e2087fce664f1f03e841cab5e5071f23</originalsourceid><addsrcrecordid>eNqFkb9PAyEUx4nR2Fqd3QyJi4O1wHE_6maaqk3auOhMOPpoae6OenDR_vdyvdrBRRYe5MPnvXxB6JqSBxrWiPKEDdmYhSOPOTlB_ePN6bGmrIcunNsQQtMoJeeoF5EkI1ma9tF2AV6uoLKlUXhpnAPlja2w1divAStZmQrwqvE4ALXNjfXyEZvKmdXau1B4i738tnvBPS6DLbdFcMlqiavG16bVyQJrkL6pwV2iMy0LB1eHfYA-nqfvk9fh_O1lNnmaD1WUUjJkCdEJT6Uek1wxoEyxOOJsGaZmOmcZAxZKrSBJuKaaRJBxqmQeQ0xSqlk0QHedd1vbzwacF6VxCopCVmAbJxhNxzx0IVFAb_-gG9vUYehAMcJ5Ftq1wlFHhRicq0GLbW1KWe8EJaL9DNHGLdroxf4zwoubg7fJS1ge-d_0AxB3wJcpYPefT0wXs078Azhok7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2204482822</pqid></control><display><type>article</type><title>Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Alessandri, Giulia ; Milani, Christian ; Mancabelli, Leonardo ; Mangifesta, Marta ; Lugli, Gabriele A. ; Viappiani, Alice ; Duranti, Sabrina ; Turroni, Francesca ; Ossiprandi, Maria C. ; van Sinderen, Douwe ; Ventura, Marco</creator><creatorcontrib>Alessandri, Giulia ; Milani, Christian ; Mancabelli, Leonardo ; Mangifesta, Marta ; Lugli, Gabriele A. ; Viappiani, Alice ; Duranti, Sabrina ; Turroni, Francesca ; Ossiprandi, Maria C. ; van Sinderen, Douwe ; Ventura, Marco</creatorcontrib><description>Summary
Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high‐protein or high‐carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.14540</identifier><identifier>PMID: 30680877</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bifidobacterium - genetics ; Biodiversity ; Biological evolution ; Bones ; Canidae ; Carbohydrates ; Cohabitation ; Comparative analysis ; Composition ; Digestive system ; Dogs ; Dogs - microbiology ; Domestication ; Feces - microbiology ; Food ; Foods ; Gastrointestinal Microbiome - genetics ; Gastrointestinal tract ; Genomes ; Intestinal flora ; Intestinal microflora ; Intestine ; Metabolism ; Metagenome - genetics ; Metagenomics ; Microbiota ; Microorganisms ; Nutritional Physiological Phenomena ; Proteins ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Spacer ; Taxonomy ; Wolves ; Wolves - microbiology</subject><ispartof>Environmental microbiology, 2019-04, Vol.21 (4), p.1331-1343</ispartof><rights>2019 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2019 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3710-260f647af90bc2e12c25342d0872fb282e2087fce664f1f03e841cab5e5071f23</citedby><cites>FETCH-LOGICAL-c3710-260f647af90bc2e12c25342d0872fb282e2087fce664f1f03e841cab5e5071f23</cites><orcidid>0000-0002-4875-4560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.14540$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.14540$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30680877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alessandri, Giulia</creatorcontrib><creatorcontrib>Milani, Christian</creatorcontrib><creatorcontrib>Mancabelli, Leonardo</creatorcontrib><creatorcontrib>Mangifesta, Marta</creatorcontrib><creatorcontrib>Lugli, Gabriele A.</creatorcontrib><creatorcontrib>Viappiani, Alice</creatorcontrib><creatorcontrib>Duranti, Sabrina</creatorcontrib><creatorcontrib>Turroni, Francesca</creatorcontrib><creatorcontrib>Ossiprandi, Maria C.</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><creatorcontrib>Ventura, Marco</creatorcontrib><title>Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high‐protein or high‐carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bifidobacterium - genetics</subject><subject>Biodiversity</subject><subject>Biological evolution</subject><subject>Bones</subject><subject>Canidae</subject><subject>Carbohydrates</subject><subject>Cohabitation</subject><subject>Comparative analysis</subject><subject>Composition</subject><subject>Digestive system</subject><subject>Dogs</subject><subject>Dogs - microbiology</subject><subject>Domestication</subject><subject>Feces - microbiology</subject><subject>Food</subject><subject>Foods</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gastrointestinal tract</subject><subject>Genomes</subject><subject>Intestinal flora</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Metabolism</subject><subject>Metagenome - genetics</subject><subject>Metagenomics</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Nutritional Physiological Phenomena</subject><subject>Proteins</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Spacer</subject><subject>Taxonomy</subject><subject>Wolves</subject><subject>Wolves - microbiology</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb9PAyEUx4nR2Fqd3QyJi4O1wHE_6maaqk3auOhMOPpoae6OenDR_vdyvdrBRRYe5MPnvXxB6JqSBxrWiPKEDdmYhSOPOTlB_ePN6bGmrIcunNsQQtMoJeeoF5EkI1ma9tF2AV6uoLKlUXhpnAPlja2w1divAStZmQrwqvE4ALXNjfXyEZvKmdXau1B4i738tnvBPS6DLbdFcMlqiavG16bVyQJrkL6pwV2iMy0LB1eHfYA-nqfvk9fh_O1lNnmaD1WUUjJkCdEJT6Uek1wxoEyxOOJsGaZmOmcZAxZKrSBJuKaaRJBxqmQeQ0xSqlk0QHedd1vbzwacF6VxCopCVmAbJxhNxzx0IVFAb_-gG9vUYehAMcJ5Ftq1wlFHhRicq0GLbW1KWe8EJaL9DNHGLdroxf4zwoubg7fJS1ge-d_0AxB3wJcpYPefT0wXs078Azhok7Y</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Alessandri, Giulia</creator><creator>Milani, Christian</creator><creator>Mancabelli, Leonardo</creator><creator>Mangifesta, Marta</creator><creator>Lugli, Gabriele A.</creator><creator>Viappiani, Alice</creator><creator>Duranti, Sabrina</creator><creator>Turroni, Francesca</creator><creator>Ossiprandi, Maria C.</creator><creator>van Sinderen, Douwe</creator><creator>Ventura, Marco</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4875-4560</orcidid></search><sort><creationdate>201904</creationdate><title>Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features</title><author>Alessandri, Giulia ; Milani, Christian ; Mancabelli, Leonardo ; Mangifesta, Marta ; Lugli, Gabriele A. ; Viappiani, Alice ; Duranti, Sabrina ; Turroni, Francesca ; Ossiprandi, Maria C. ; van Sinderen, Douwe ; Ventura, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3710-260f647af90bc2e12c25342d0872fb282e2087fce664f1f03e841cab5e5071f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bifidobacterium - genetics</topic><topic>Biodiversity</topic><topic>Biological evolution</topic><topic>Bones</topic><topic>Canidae</topic><topic>Carbohydrates</topic><topic>Cohabitation</topic><topic>Comparative analysis</topic><topic>Composition</topic><topic>Digestive system</topic><topic>Dogs</topic><topic>Dogs - microbiology</topic><topic>Domestication</topic><topic>Feces - microbiology</topic><topic>Food</topic><topic>Foods</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gastrointestinal tract</topic><topic>Genomes</topic><topic>Intestinal flora</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Metabolism</topic><topic>Metagenome - genetics</topic><topic>Metagenomics</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Nutritional Physiological Phenomena</topic><topic>Proteins</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Spacer</topic><topic>Taxonomy</topic><topic>Wolves</topic><topic>Wolves - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessandri, Giulia</creatorcontrib><creatorcontrib>Milani, Christian</creatorcontrib><creatorcontrib>Mancabelli, Leonardo</creatorcontrib><creatorcontrib>Mangifesta, Marta</creatorcontrib><creatorcontrib>Lugli, Gabriele A.</creatorcontrib><creatorcontrib>Viappiani, Alice</creatorcontrib><creatorcontrib>Duranti, Sabrina</creatorcontrib><creatorcontrib>Turroni, Francesca</creatorcontrib><creatorcontrib>Ossiprandi, Maria C.</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><creatorcontrib>Ventura, Marco</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessandri, Giulia</au><au>Milani, Christian</au><au>Mancabelli, Leonardo</au><au>Mangifesta, Marta</au><au>Lugli, Gabriele A.</au><au>Viappiani, Alice</au><au>Duranti, Sabrina</au><au>Turroni, Francesca</au><au>Ossiprandi, Maria C.</au><au>van Sinderen, Douwe</au><au>Ventura, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>21</volume><issue>4</issue><spage>1331</spage><epage>1343</epage><pages>1331-1343</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
Domestication of dogs from wolves is the oldest known example of ongoing animal selection, responsible for generating more than 300 dog breeds worldwide. In order to investigate the taxonomic and functional evolution of the canine gut microbiota, a multi‐omics approach was applied to six wild wolves and 169 dog faecal samples, the latter encompassing 51 breeds, which fully covers currently known canine genetic biodiversity. Specifically, 16S rRNA gene and bifidobacterial Internally Transcribed Spacer (ITS) profiling were employed to reconstruct and then compare the canine core gut microbiota to those of wolves and humans, revealing that artificial selection and subsequent cohabitation of dogs with their owners influenced the microbial population of canine gut through loss and acquisition of specific bacterial taxa. Moreover, comparative analysis of the intestinal bacterial population of dogs fed on Bones and Raw Food (BARF) or commercial food (CF) diet, coupled with shotgun metagenomics, highlighted that both bacterial composition and metabolic repertoire of the canine gut microbiota have evolved to adapt to high‐protein or high‐carbohydrates intake. Altogether, these data indicate that artificial selection and domestication not only affected the canine genome, but also shaped extensively the bacterial population harboured by the canine gut.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30680877</pmid><doi>10.1111/1462-2920.14540</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4875-4560</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2019-04, Vol.21 (4), p.1331-1343 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179426003 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Animals Bacteria Bacteria - classification Bacteria - genetics Bifidobacterium - genetics Biodiversity Biological evolution Bones Canidae Carbohydrates Cohabitation Comparative analysis Composition Digestive system Dogs Dogs - microbiology Domestication Feces - microbiology Food Foods Gastrointestinal Microbiome - genetics Gastrointestinal tract Genomes Intestinal flora Intestinal microflora Intestine Metabolism Metagenome - genetics Metagenomics Microbiota Microorganisms Nutritional Physiological Phenomena Proteins RNA, Ribosomal, 16S - genetics rRNA 16S Spacer Taxonomy Wolves Wolves - microbiology |
title | Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metagenomic%20dissection%20of%20the%20canine%20gut%20microbiota:%20insights%20into%20taxonomic,%20metabolic%20and%20nutritional%20features&rft.jtitle=Environmental%20microbiology&rft.au=Alessandri,%20Giulia&rft.date=2019-04&rft.volume=21&rft.issue=4&rft.spage=1331&rft.epage=1343&rft.pages=1331-1343&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.14540&rft_dat=%3Cproquest_cross%3E2204482822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2204482822&rft_id=info:pmid/30680877&rfr_iscdi=true |