Attractor Stability in Finite Asynchronous Biological System Models
We present mathematical techniques for exhaustive studies of long-term dynamics of asynchronous biological system models. Specifically, we extend the notion of κ -equivalence developed for graph dynamical systems to support systematic analysis of all possible attractor configurations that can be gen...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2019-05, Vol.81 (5), p.1442-1460 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1460 |
---|---|
container_issue | 5 |
container_start_page | 1442 |
container_title | Bulletin of mathematical biology |
container_volume | 81 |
creator | Mortveit, Henning S. Pederson, Ryan D. |
description | We present mathematical techniques for exhaustive studies of long-term dynamics of asynchronous biological system models. Specifically, we extend the notion of
κ
-equivalence developed for graph dynamical systems to support systematic analysis of all possible attractor configurations that can be generated when varying the asynchronous update order (Macauley and Mortveit in Nonlinearity 22(2):421,
2009
). We extend earlier work by Veliz-Cuba and Stigler (J Comput Biol 18(6):783–794,
2011
), Goles et al. (Bull Math Biol 75(6):939–966,
2013
), and others by comparing long-term dynamics up to
topological conjugation
: rather than comparing the exact states and their transitions on attractors, we only compare the attractor structures. In general, obtaining this information is computationally intractable. Here, we adapt and apply combinatorial theory for dynamical systems from Macauley and Mortveit (Proc Am Math Soc 136(12):4157–4165,
2008
.
https://doi.org/10.1090/S0002-9939-09-09884-0
;
2009
; Electron J Comb 18:197,
2011a
; Discret Contin Dyn Syst 4(6):1533–1541,
2011b
.
https://doi.org/10.3934/dcdss.2011.4.1533
; Theor Comput Sci 504:26–37,
2013
.
https://doi.org/10.1016/j.tcs.2012.09.015
; in: Isokawa T, Imai K, Matsui N, Peper F, Umeo H (eds) Cellular automata and discrete complex systems,
2014
.
https://doi.org/10.1007/978-3-319-18812-6_6
) to develop computational methods that greatly reduce this computational cost. We give a detailed algorithm and apply it to (i) the
lac
operon model for
Escherichia coli
proposed by Veliz-Cuba and Stigler (
2011
), and (ii) the regulatory network involved in the control of the cell cycle and cell differentiation in the
Caenorhabditis elegans
vulva precursor cells proposed by Weinstein et al. (BMC Bioinform 16(1):1,
2015
). In both cases, we uncover all possible limit cycle structures for these networks under sequential updates. Specifically, for the
lac
operon model, rather than examining all
10
!
>
3.6
·
10
6
sequential update orders, we demonstrate that it is sufficient to consider 344 representative update orders, and, more notably, that these 344 representatives give rise to
4 distinct attractor structures
. A similar analysis performed for the
C. elegans
model demonstrates that it has precisely 125 distinct attractor structures. We conclude with observations on the variety and distribution of the models’ attractor structures and use the results to discuss their robustness. |
doi_str_mv | 10.1007/s11538-018-00565-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179414995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2168002893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-28e88bb0ffb7406a48bf11ab669a3e4d00de9a4bb3ae199c612580279af04c793</originalsourceid><addsrcrecordid>eNp9kEFPwyAYhonRuDn9Ax5MEy9eqh-UtnCci1OTGQ_TM4GWTpauTGDJ9u9FOzXx4IFw4Hlf3jwInWO4xgDljcc4z1gKOB7IizzdHqAhzglJeQHkEA0BOEkZoTBAJ94vIYZ4xo_RIIMi8kCHaDIOwckqWJfMg1SmNWGXmC6Zms4EnYz9rqvenO3sxie3xrZ2YSrZJvOdD3qVPNlat_4UHTWy9fpsf4_Q6_TuZfKQzp7vHyfjWVplZR5SwjRjSkHTqJJCISlTDcZSFQWXmaY1QK25pEplUmPOqwKTnAEpuWyAVnH5CF31vWtn3zfaB7EyvtJtKzsd9wmCS04x5TyP6OUfdGk3rovrIlUwAMJ4FinSU5Wz3jvdiLUzK-l2AoP4VCx6xSIqFl-KxTaGLvbVG7XS9U_k22kEsh7w8albaPf79z-1H9Sahoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2168002893</pqid></control><display><type>article</type><title>Attractor Stability in Finite Asynchronous Biological System Models</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Mortveit, Henning S. ; Pederson, Ryan D.</creator><creatorcontrib>Mortveit, Henning S. ; Pederson, Ryan D.</creatorcontrib><description>We present mathematical techniques for exhaustive studies of long-term dynamics of asynchronous biological system models. Specifically, we extend the notion of
κ
-equivalence developed for graph dynamical systems to support systematic analysis of all possible attractor configurations that can be generated when varying the asynchronous update order (Macauley and Mortveit in Nonlinearity 22(2):421,
2009
). We extend earlier work by Veliz-Cuba and Stigler (J Comput Biol 18(6):783–794,
2011
), Goles et al. (Bull Math Biol 75(6):939–966,
2013
), and others by comparing long-term dynamics up to
topological conjugation
: rather than comparing the exact states and their transitions on attractors, we only compare the attractor structures. In general, obtaining this information is computationally intractable. Here, we adapt and apply combinatorial theory for dynamical systems from Macauley and Mortveit (Proc Am Math Soc 136(12):4157–4165,
2008
.
https://doi.org/10.1090/S0002-9939-09-09884-0
;
2009
; Electron J Comb 18:197,
2011a
; Discret Contin Dyn Syst 4(6):1533–1541,
2011b
.
https://doi.org/10.3934/dcdss.2011.4.1533
; Theor Comput Sci 504:26–37,
2013
.
https://doi.org/10.1016/j.tcs.2012.09.015
; in: Isokawa T, Imai K, Matsui N, Peper F, Umeo H (eds) Cellular automata and discrete complex systems,
2014
.
https://doi.org/10.1007/978-3-319-18812-6_6
) to develop computational methods that greatly reduce this computational cost. We give a detailed algorithm and apply it to (i) the
lac
operon model for
Escherichia coli
proposed by Veliz-Cuba and Stigler (
2011
), and (ii) the regulatory network involved in the control of the cell cycle and cell differentiation in the
Caenorhabditis elegans
vulva precursor cells proposed by Weinstein et al. (BMC Bioinform 16(1):1,
2015
). In both cases, we uncover all possible limit cycle structures for these networks under sequential updates. Specifically, for the
lac
operon model, rather than examining all
10
!
>
3.6
·
10
6
sequential update orders, we demonstrate that it is sufficient to consider 344 representative update orders, and, more notably, that these 344 representatives give rise to
4 distinct attractor structures
. A similar analysis performed for the
C. elegans
model demonstrates that it has precisely 125 distinct attractor structures. We conclude with observations on the variety and distribution of the models’ attractor structures and use the results to discuss their robustness.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-018-00565-x</identifier><identifier>PMID: 30656504</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Animals ; Attractors (mathematics) ; Automata theory ; Biological models (mathematics) ; Caenorhabditis elegans - cytology ; Cell Biology ; Cell cycle ; Cell Cycle Checkpoints ; Cell Differentiation ; Cellular automata ; Combinatorial analysis ; Complex systems ; Computer applications ; Conjugation ; Differentiation (biology) ; Dynamical systems ; E coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Lac Operon ; Lactose operon ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Nonlinear systems ; Robustness (mathematics) ; Software ; Systems Biology ; Vulva</subject><ispartof>Bulletin of mathematical biology, 2019-05, Vol.81 (5), p.1442-1460</ispartof><rights>Society for Mathematical Biology 2019</rights><rights>Bulletin of Mathematical Biology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-28e88bb0ffb7406a48bf11ab669a3e4d00de9a4bb3ae199c612580279af04c793</citedby><cites>FETCH-LOGICAL-c375t-28e88bb0ffb7406a48bf11ab669a3e4d00de9a4bb3ae199c612580279af04c793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-018-00565-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-018-00565-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30656504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mortveit, Henning S.</creatorcontrib><creatorcontrib>Pederson, Ryan D.</creatorcontrib><title>Attractor Stability in Finite Asynchronous Biological System Models</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>We present mathematical techniques for exhaustive studies of long-term dynamics of asynchronous biological system models. Specifically, we extend the notion of
κ
-equivalence developed for graph dynamical systems to support systematic analysis of all possible attractor configurations that can be generated when varying the asynchronous update order (Macauley and Mortveit in Nonlinearity 22(2):421,
2009
). We extend earlier work by Veliz-Cuba and Stigler (J Comput Biol 18(6):783–794,
2011
), Goles et al. (Bull Math Biol 75(6):939–966,
2013
), and others by comparing long-term dynamics up to
topological conjugation
: rather than comparing the exact states and their transitions on attractors, we only compare the attractor structures. In general, obtaining this information is computationally intractable. Here, we adapt and apply combinatorial theory for dynamical systems from Macauley and Mortveit (Proc Am Math Soc 136(12):4157–4165,
2008
.
https://doi.org/10.1090/S0002-9939-09-09884-0
;
2009
; Electron J Comb 18:197,
2011a
; Discret Contin Dyn Syst 4(6):1533–1541,
2011b
.
https://doi.org/10.3934/dcdss.2011.4.1533
; Theor Comput Sci 504:26–37,
2013
.
https://doi.org/10.1016/j.tcs.2012.09.015
; in: Isokawa T, Imai K, Matsui N, Peper F, Umeo H (eds) Cellular automata and discrete complex systems,
2014
.
https://doi.org/10.1007/978-3-319-18812-6_6
) to develop computational methods that greatly reduce this computational cost. We give a detailed algorithm and apply it to (i) the
lac
operon model for
Escherichia coli
proposed by Veliz-Cuba and Stigler (
2011
), and (ii) the regulatory network involved in the control of the cell cycle and cell differentiation in the
Caenorhabditis elegans
vulva precursor cells proposed by Weinstein et al. (BMC Bioinform 16(1):1,
2015
). In both cases, we uncover all possible limit cycle structures for these networks under sequential updates. Specifically, for the
lac
operon model, rather than examining all
10
!
>
3.6
·
10
6
sequential update orders, we demonstrate that it is sufficient to consider 344 representative update orders, and, more notably, that these 344 representatives give rise to
4 distinct attractor structures
. A similar analysis performed for the
C. elegans
model demonstrates that it has precisely 125 distinct attractor structures. We conclude with observations on the variety and distribution of the models’ attractor structures and use the results to discuss their robustness.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Attractors (mathematics)</subject><subject>Automata theory</subject><subject>Biological models (mathematics)</subject><subject>Caenorhabditis elegans - cytology</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints</subject><subject>Cell Differentiation</subject><subject>Cellular automata</subject><subject>Combinatorial analysis</subject><subject>Complex systems</subject><subject>Computer applications</subject><subject>Conjugation</subject><subject>Differentiation (biology)</subject><subject>Dynamical systems</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Lac Operon</subject><subject>Lactose operon</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Nonlinear systems</subject><subject>Robustness (mathematics)</subject><subject>Software</subject><subject>Systems Biology</subject><subject>Vulva</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPwyAYhonRuDn9Ax5MEy9eqh-UtnCci1OTGQ_TM4GWTpauTGDJ9u9FOzXx4IFw4Hlf3jwInWO4xgDljcc4z1gKOB7IizzdHqAhzglJeQHkEA0BOEkZoTBAJ94vIYZ4xo_RIIMi8kCHaDIOwckqWJfMg1SmNWGXmC6Zms4EnYz9rqvenO3sxie3xrZ2YSrZJvOdD3qVPNlat_4UHTWy9fpsf4_Q6_TuZfKQzp7vHyfjWVplZR5SwjRjSkHTqJJCISlTDcZSFQWXmaY1QK25pEplUmPOqwKTnAEpuWyAVnH5CF31vWtn3zfaB7EyvtJtKzsd9wmCS04x5TyP6OUfdGk3rovrIlUwAMJ4FinSU5Wz3jvdiLUzK-l2AoP4VCx6xSIqFl-KxTaGLvbVG7XS9U_k22kEsh7w8albaPf79z-1H9Sahoc</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Mortveit, Henning S.</creator><creator>Pederson, Ryan D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20190501</creationdate><title>Attractor Stability in Finite Asynchronous Biological System Models</title><author>Mortveit, Henning S. ; Pederson, Ryan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-28e88bb0ffb7406a48bf11ab669a3e4d00de9a4bb3ae199c612580279af04c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Attractors (mathematics)</topic><topic>Automata theory</topic><topic>Biological models (mathematics)</topic><topic>Caenorhabditis elegans - cytology</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints</topic><topic>Cell Differentiation</topic><topic>Cellular automata</topic><topic>Combinatorial analysis</topic><topic>Complex systems</topic><topic>Computer applications</topic><topic>Conjugation</topic><topic>Differentiation (biology)</topic><topic>Dynamical systems</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Lac Operon</topic><topic>Lactose operon</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Nonlinear systems</topic><topic>Robustness (mathematics)</topic><topic>Software</topic><topic>Systems Biology</topic><topic>Vulva</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mortveit, Henning S.</creatorcontrib><creatorcontrib>Pederson, Ryan D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mortveit, Henning S.</au><au>Pederson, Ryan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attractor Stability in Finite Asynchronous Biological System Models</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>81</volume><issue>5</issue><spage>1442</spage><epage>1460</epage><pages>1442-1460</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>We present mathematical techniques for exhaustive studies of long-term dynamics of asynchronous biological system models. Specifically, we extend the notion of
κ
-equivalence developed for graph dynamical systems to support systematic analysis of all possible attractor configurations that can be generated when varying the asynchronous update order (Macauley and Mortveit in Nonlinearity 22(2):421,
2009
). We extend earlier work by Veliz-Cuba and Stigler (J Comput Biol 18(6):783–794,
2011
), Goles et al. (Bull Math Biol 75(6):939–966,
2013
), and others by comparing long-term dynamics up to
topological conjugation
: rather than comparing the exact states and their transitions on attractors, we only compare the attractor structures. In general, obtaining this information is computationally intractable. Here, we adapt and apply combinatorial theory for dynamical systems from Macauley and Mortveit (Proc Am Math Soc 136(12):4157–4165,
2008
.
https://doi.org/10.1090/S0002-9939-09-09884-0
;
2009
; Electron J Comb 18:197,
2011a
; Discret Contin Dyn Syst 4(6):1533–1541,
2011b
.
https://doi.org/10.3934/dcdss.2011.4.1533
; Theor Comput Sci 504:26–37,
2013
.
https://doi.org/10.1016/j.tcs.2012.09.015
; in: Isokawa T, Imai K, Matsui N, Peper F, Umeo H (eds) Cellular automata and discrete complex systems,
2014
.
https://doi.org/10.1007/978-3-319-18812-6_6
) to develop computational methods that greatly reduce this computational cost. We give a detailed algorithm and apply it to (i) the
lac
operon model for
Escherichia coli
proposed by Veliz-Cuba and Stigler (
2011
), and (ii) the regulatory network involved in the control of the cell cycle and cell differentiation in the
Caenorhabditis elegans
vulva precursor cells proposed by Weinstein et al. (BMC Bioinform 16(1):1,
2015
). In both cases, we uncover all possible limit cycle structures for these networks under sequential updates. Specifically, for the
lac
operon model, rather than examining all
10
!
>
3.6
·
10
6
sequential update orders, we demonstrate that it is sufficient to consider 344 representative update orders, and, more notably, that these 344 representatives give rise to
4 distinct attractor structures
. A similar analysis performed for the
C. elegans
model demonstrates that it has precisely 125 distinct attractor structures. We conclude with observations on the variety and distribution of the models’ attractor structures and use the results to discuss their robustness.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30656504</pmid><doi>10.1007/s11538-018-00565-x</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2019-05, Vol.81 (5), p.1442-1460 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179414995 |
source | MEDLINE; SpringerNature Journals |
subjects | Algorithms Animals Attractors (mathematics) Automata theory Biological models (mathematics) Caenorhabditis elegans - cytology Cell Biology Cell cycle Cell Cycle Checkpoints Cell Differentiation Cellular automata Combinatorial analysis Complex systems Computer applications Conjugation Differentiation (biology) Dynamical systems E coli Escherichia coli - genetics Escherichia coli - metabolism Lac Operon Lactose operon Life Sciences Mathematical and Computational Biology Mathematical Concepts Mathematical models Mathematics Mathematics and Statistics Models, Biological Nonlinear systems Robustness (mathematics) Software Systems Biology Vulva |
title | Attractor Stability in Finite Asynchronous Biological System Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attractor%20Stability%20in%20Finite%20Asynchronous%20Biological%20System%20Models&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Mortveit,%20Henning%20S.&rft.date=2019-05-01&rft.volume=81&rft.issue=5&rft.spage=1442&rft.epage=1460&rft.pages=1442-1460&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-018-00565-x&rft_dat=%3Cproquest_cross%3E2168002893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2168002893&rft_id=info:pmid/30656504&rfr_iscdi=true |