Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks
Purpose To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs). Methods A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2019-06, Vol.81 (6), p.3840-3853 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3853 |
---|---|
container_issue | 6 |
container_start_page | 3840 |
container_title | Magnetic resonance in medicine |
container_volume | 81 |
creator | Jun, Yohan Eo, Taejoon Shin, Hyungseob Kim, Taeseong Lee, Ho‐Joon Hwang, Dosik |
description | Purpose
To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs).
Methods
A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal‐to‐noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI‐net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep‐learning method (U‐net).
Results
DPI‐net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI‐net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods.
Conclusion
DPI‐net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep‐learning methods. |
doi_str_mv | 10.1002/mrm.27656 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179408839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197113144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-24757cd42c1423e534a6fae4c2a5657f06a3c9e7d4ef2dcf523ee1391a8d42fc3</originalsourceid><addsrcrecordid>eNp10btuFDEUBmALEZElUPACyBINFJP47nWJIm5SokQI6pHxHE8cPPZizxAtFY_AM_IkeLOBAimNT-Hv_LL8I_SMkmNKCDuZynTMtJLqAVpRyVjHpBEP0YpoQTpOjThEj2u9JoQYo8UjdMiJUkozvkI_Lm2xMULEYbJjSCMOCc9hgt8_f2XfDh_DeDXjdplgDg4XqDnZ5ADbNIY8Fru52uKl7lYHgA2eljiHOhewE3Y5fc9xmUNbiTjBUm7HfJPL1_oEHXgbKzy9m0fo89s3n07fd2cX7z6cvj7rHJdcdUxoqd0gmKOCcZBcWOUtCMesVFJ7oix3BvQgwLPBedkQUG6oXbcl7_gRernP3ZT8bYE691OoDmK0CfJSe0a1EWS95qbRF__R67yU9vadMppSToVo6tVeuZJrLeD7TWm_V7Y9Jf2ukL4V0t8W0uzzu8TlywTDP_m3gQZO9uAmRNjen9SffzzfR_4BfUyZXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197113144</pqid></control><display><type>article</type><title>Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><creator>Jun, Yohan ; Eo, Taejoon ; Shin, Hyungseob ; Kim, Taeseong ; Lee, Ho‐Joon ; Hwang, Dosik</creator><creatorcontrib>Jun, Yohan ; Eo, Taejoon ; Shin, Hyungseob ; Kim, Taeseong ; Lee, Ho‐Joon ; Hwang, Dosik</creatorcontrib><description>Purpose
To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs).
Methods
A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal‐to‐noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI‐net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep‐learning method (U‐net).
Results
DPI‐net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI‐net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods.
Conclusion
DPI‐net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep‐learning methods.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27656</identifier><identifier>PMID: 30666723</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Angiography ; Arteries ; Artificial neural networks ; Blood vessels ; Brain - blood supply ; Brain - diagnostic imaging ; Cerebral Angiography - methods ; Deep Learning ; Feature extraction ; Feature maps ; Humans ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Learning ; Magnetic resonance ; magnetic resonance angiography ; Magnetic Resonance Angiography - methods ; multistream network ; Neural networks ; parallel imaging ; Sharpness ; Teaching methods ; time‐of‐flight</subject><ispartof>Magnetic resonance in medicine, 2019-06, Vol.81 (6), p.3840-3853</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-24757cd42c1423e534a6fae4c2a5657f06a3c9e7d4ef2dcf523ee1391a8d42fc3</citedby><cites>FETCH-LOGICAL-c3536-24757cd42c1423e534a6fae4c2a5657f06a3c9e7d4ef2dcf523ee1391a8d42fc3</cites><orcidid>0000-0003-4787-4760 ; 0000-0003-0831-6184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27656$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27656$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30666723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, Yohan</creatorcontrib><creatorcontrib>Eo, Taejoon</creatorcontrib><creatorcontrib>Shin, Hyungseob</creatorcontrib><creatorcontrib>Kim, Taeseong</creatorcontrib><creatorcontrib>Lee, Ho‐Joon</creatorcontrib><creatorcontrib>Hwang, Dosik</creatorcontrib><title>Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs).
Methods
A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal‐to‐noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI‐net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep‐learning method (U‐net).
Results
DPI‐net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI‐net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods.
Conclusion
DPI‐net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep‐learning methods.</description><subject>Algorithms</subject><subject>Angiography</subject><subject>Arteries</subject><subject>Artificial neural networks</subject><subject>Blood vessels</subject><subject>Brain - blood supply</subject><subject>Brain - diagnostic imaging</subject><subject>Cerebral Angiography - methods</subject><subject>Deep Learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Learning</subject><subject>Magnetic resonance</subject><subject>magnetic resonance angiography</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>multistream network</subject><subject>Neural networks</subject><subject>parallel imaging</subject><subject>Sharpness</subject><subject>Teaching methods</subject><subject>time‐of‐flight</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10btuFDEUBmALEZElUPACyBINFJP47nWJIm5SokQI6pHxHE8cPPZizxAtFY_AM_IkeLOBAimNT-Hv_LL8I_SMkmNKCDuZynTMtJLqAVpRyVjHpBEP0YpoQTpOjThEj2u9JoQYo8UjdMiJUkozvkI_Lm2xMULEYbJjSCMOCc9hgt8_f2XfDh_DeDXjdplgDg4XqDnZ5ADbNIY8Fru52uKl7lYHgA2eljiHOhewE3Y5fc9xmUNbiTjBUm7HfJPL1_oEHXgbKzy9m0fo89s3n07fd2cX7z6cvj7rHJdcdUxoqd0gmKOCcZBcWOUtCMesVFJ7oix3BvQgwLPBedkQUG6oXbcl7_gRernP3ZT8bYE691OoDmK0CfJSe0a1EWS95qbRF__R67yU9vadMppSToVo6tVeuZJrLeD7TWm_V7Y9Jf2ukL4V0t8W0uzzu8TlywTDP_m3gQZO9uAmRNjen9SffzzfR_4BfUyZXA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Jun, Yohan</creator><creator>Eo, Taejoon</creator><creator>Shin, Hyungseob</creator><creator>Kim, Taeseong</creator><creator>Lee, Ho‐Joon</creator><creator>Hwang, Dosik</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4787-4760</orcidid><orcidid>https://orcid.org/0000-0003-0831-6184</orcidid></search><sort><creationdate>201906</creationdate><title>Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks</title><author>Jun, Yohan ; Eo, Taejoon ; Shin, Hyungseob ; Kim, Taeseong ; Lee, Ho‐Joon ; Hwang, Dosik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-24757cd42c1423e534a6fae4c2a5657f06a3c9e7d4ef2dcf523ee1391a8d42fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Angiography</topic><topic>Arteries</topic><topic>Artificial neural networks</topic><topic>Blood vessels</topic><topic>Brain - blood supply</topic><topic>Brain - diagnostic imaging</topic><topic>Cerebral Angiography - methods</topic><topic>Deep Learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Learning</topic><topic>Magnetic resonance</topic><topic>magnetic resonance angiography</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>multistream network</topic><topic>Neural networks</topic><topic>parallel imaging</topic><topic>Sharpness</topic><topic>Teaching methods</topic><topic>time‐of‐flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Yohan</creatorcontrib><creatorcontrib>Eo, Taejoon</creatorcontrib><creatorcontrib>Shin, Hyungseob</creatorcontrib><creatorcontrib>Kim, Taeseong</creatorcontrib><creatorcontrib>Lee, Ho‐Joon</creatorcontrib><creatorcontrib>Hwang, Dosik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Yohan</au><au>Eo, Taejoon</au><au>Shin, Hyungseob</au><au>Kim, Taeseong</au><au>Lee, Ho‐Joon</au><au>Hwang, Dosik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-06</date><risdate>2019</risdate><volume>81</volume><issue>6</issue><spage>3840</spage><epage>3853</epage><pages>3840-3853</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs).
Methods
A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal‐to‐noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI‐net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep‐learning method (U‐net).
Results
DPI‐net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI‐net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods.
Conclusion
DPI‐net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep‐learning methods.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30666723</pmid><doi>10.1002/mrm.27656</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4787-4760</orcidid><orcidid>https://orcid.org/0000-0003-0831-6184</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2019-06, Vol.81 (6), p.3840-3853 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179408839 |
source | MEDLINE; Wiley Journals; Wiley Online Library Free Content |
subjects | Algorithms Angiography Arteries Artificial neural networks Blood vessels Brain - blood supply Brain - diagnostic imaging Cerebral Angiography - methods Deep Learning Feature extraction Feature maps Humans Image Processing, Computer-Assisted - methods Image reconstruction Learning Magnetic resonance magnetic resonance angiography Magnetic Resonance Angiography - methods multistream network Neural networks parallel imaging Sharpness Teaching methods time‐of‐flight |
title | Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20imaging%20in%20time%E2%80%90of%E2%80%90flight%20magnetic%20resonance%20angiography%20using%20deep%20multistream%20convolutional%20neural%20networks&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Jun,%20Yohan&rft.date=2019-06&rft.volume=81&rft.issue=6&rft.spage=3840&rft.epage=3853&rft.pages=3840-3853&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27656&rft_dat=%3Cproquest_cross%3E2197113144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197113144&rft_id=info:pmid/30666723&rfr_iscdi=true |