Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks

Purpose To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs). Methods A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2019-06, Vol.81 (6), p.3840-3853
Hauptverfasser: Jun, Yohan, Eo, Taejoon, Shin, Hyungseob, Kim, Taeseong, Lee, Ho‐Joon, Hwang, Dosik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3853
container_issue 6
container_start_page 3840
container_title Magnetic resonance in medicine
container_volume 81
creator Jun, Yohan
Eo, Taejoon
Shin, Hyungseob
Kim, Taeseong
Lee, Ho‐Joon
Hwang, Dosik
description Purpose To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs). Methods A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal‐to‐noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI‐net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep‐learning method (U‐net). Results DPI‐net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI‐net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods. Conclusion DPI‐net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep‐learning methods.
doi_str_mv 10.1002/mrm.27656
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179408839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197113144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-24757cd42c1423e534a6fae4c2a5657f06a3c9e7d4ef2dcf523ee1391a8d42fc3</originalsourceid><addsrcrecordid>eNp10btuFDEUBmALEZElUPACyBINFJP47nWJIm5SokQI6pHxHE8cPPZizxAtFY_AM_IkeLOBAimNT-Hv_LL8I_SMkmNKCDuZynTMtJLqAVpRyVjHpBEP0YpoQTpOjThEj2u9JoQYo8UjdMiJUkozvkI_Lm2xMULEYbJjSCMOCc9hgt8_f2XfDh_DeDXjdplgDg4XqDnZ5ADbNIY8Fru52uKl7lYHgA2eljiHOhewE3Y5fc9xmUNbiTjBUm7HfJPL1_oEHXgbKzy9m0fo89s3n07fd2cX7z6cvj7rHJdcdUxoqd0gmKOCcZBcWOUtCMesVFJ7oix3BvQgwLPBedkQUG6oXbcl7_gRernP3ZT8bYE691OoDmK0CfJSe0a1EWS95qbRF__R67yU9vadMppSToVo6tVeuZJrLeD7TWm_V7Y9Jf2ukL4V0t8W0uzzu8TlywTDP_m3gQZO9uAmRNjen9SffzzfR_4BfUyZXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197113144</pqid></control><display><type>article</type><title>Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks</title><source>MEDLINE</source><source>Wiley Journals</source><source>Wiley Online Library Free Content</source><creator>Jun, Yohan ; Eo, Taejoon ; Shin, Hyungseob ; Kim, Taeseong ; Lee, Ho‐Joon ; Hwang, Dosik</creator><creatorcontrib>Jun, Yohan ; Eo, Taejoon ; Shin, Hyungseob ; Kim, Taeseong ; Lee, Ho‐Joon ; Hwang, Dosik</creatorcontrib><description>Purpose To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs). Methods A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal‐to‐noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI‐net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep‐learning method (U‐net). Results DPI‐net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI‐net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods. Conclusion DPI‐net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep‐learning methods.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.27656</identifier><identifier>PMID: 30666723</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Angiography ; Arteries ; Artificial neural networks ; Blood vessels ; Brain - blood supply ; Brain - diagnostic imaging ; Cerebral Angiography - methods ; Deep Learning ; Feature extraction ; Feature maps ; Humans ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Learning ; Magnetic resonance ; magnetic resonance angiography ; Magnetic Resonance Angiography - methods ; multistream network ; Neural networks ; parallel imaging ; Sharpness ; Teaching methods ; time‐of‐flight</subject><ispartof>Magnetic resonance in medicine, 2019-06, Vol.81 (6), p.3840-3853</ispartof><rights>2019 International Society for Magnetic Resonance in Medicine</rights><rights>2019 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-24757cd42c1423e534a6fae4c2a5657f06a3c9e7d4ef2dcf523ee1391a8d42fc3</citedby><cites>FETCH-LOGICAL-c3536-24757cd42c1423e534a6fae4c2a5657f06a3c9e7d4ef2dcf523ee1391a8d42fc3</cites><orcidid>0000-0003-4787-4760 ; 0000-0003-0831-6184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.27656$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.27656$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30666723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, Yohan</creatorcontrib><creatorcontrib>Eo, Taejoon</creatorcontrib><creatorcontrib>Shin, Hyungseob</creatorcontrib><creatorcontrib>Kim, Taeseong</creatorcontrib><creatorcontrib>Lee, Ho‐Joon</creatorcontrib><creatorcontrib>Hwang, Dosik</creatorcontrib><title>Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs). Methods A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal‐to‐noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI‐net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep‐learning method (U‐net). Results DPI‐net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI‐net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods. Conclusion DPI‐net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep‐learning methods.</description><subject>Algorithms</subject><subject>Angiography</subject><subject>Arteries</subject><subject>Artificial neural networks</subject><subject>Blood vessels</subject><subject>Brain - blood supply</subject><subject>Brain - diagnostic imaging</subject><subject>Cerebral Angiography - methods</subject><subject>Deep Learning</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Learning</subject><subject>Magnetic resonance</subject><subject>magnetic resonance angiography</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>multistream network</subject><subject>Neural networks</subject><subject>parallel imaging</subject><subject>Sharpness</subject><subject>Teaching methods</subject><subject>time‐of‐flight</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10btuFDEUBmALEZElUPACyBINFJP47nWJIm5SokQI6pHxHE8cPPZizxAtFY_AM_IkeLOBAimNT-Hv_LL8I_SMkmNKCDuZynTMtJLqAVpRyVjHpBEP0YpoQTpOjThEj2u9JoQYo8UjdMiJUkozvkI_Lm2xMULEYbJjSCMOCc9hgt8_f2XfDh_DeDXjdplgDg4XqDnZ5ADbNIY8Fru52uKl7lYHgA2eljiHOhewE3Y5fc9xmUNbiTjBUm7HfJPL1_oEHXgbKzy9m0fo89s3n07fd2cX7z6cvj7rHJdcdUxoqd0gmKOCcZBcWOUtCMesVFJ7oix3BvQgwLPBedkQUG6oXbcl7_gRernP3ZT8bYE691OoDmK0CfJSe0a1EWS95qbRF__R67yU9vadMppSToVo6tVeuZJrLeD7TWm_V7Y9Jf2ukL4V0t8W0uzzu8TlywTDP_m3gQZO9uAmRNjen9SffzzfR_4BfUyZXA</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Jun, Yohan</creator><creator>Eo, Taejoon</creator><creator>Shin, Hyungseob</creator><creator>Kim, Taeseong</creator><creator>Lee, Ho‐Joon</creator><creator>Hwang, Dosik</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4787-4760</orcidid><orcidid>https://orcid.org/0000-0003-0831-6184</orcidid></search><sort><creationdate>201906</creationdate><title>Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks</title><author>Jun, Yohan ; Eo, Taejoon ; Shin, Hyungseob ; Kim, Taeseong ; Lee, Ho‐Joon ; Hwang, Dosik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-24757cd42c1423e534a6fae4c2a5657f06a3c9e7d4ef2dcf523ee1391a8d42fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Angiography</topic><topic>Arteries</topic><topic>Artificial neural networks</topic><topic>Blood vessels</topic><topic>Brain - blood supply</topic><topic>Brain - diagnostic imaging</topic><topic>Cerebral Angiography - methods</topic><topic>Deep Learning</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Learning</topic><topic>Magnetic resonance</topic><topic>magnetic resonance angiography</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>multistream network</topic><topic>Neural networks</topic><topic>parallel imaging</topic><topic>Sharpness</topic><topic>Teaching methods</topic><topic>time‐of‐flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Yohan</creatorcontrib><creatorcontrib>Eo, Taejoon</creatorcontrib><creatorcontrib>Shin, Hyungseob</creatorcontrib><creatorcontrib>Kim, Taeseong</creatorcontrib><creatorcontrib>Lee, Ho‐Joon</creatorcontrib><creatorcontrib>Hwang, Dosik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Yohan</au><au>Eo, Taejoon</au><au>Shin, Hyungseob</au><au>Kim, Taeseong</au><au>Lee, Ho‐Joon</au><au>Hwang, Dosik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2019-06</date><risdate>2019</risdate><volume>81</volume><issue>6</issue><spage>3840</spage><epage>3853</epage><pages>3840-3853</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To develop and evaluate a method of parallel imaging time‐of‐flight (TOF) MRA using deep multistream convolutional neural networks (CNNs). Methods A deep parallel imaging network (“DPI‐net”) was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep‐learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal‐to‐noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI‐net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep‐learning method (U‐net). Results DPI‐net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI‐net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods. Conclusion DPI‐net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep‐learning methods.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30666723</pmid><doi>10.1002/mrm.27656</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4787-4760</orcidid><orcidid>https://orcid.org/0000-0003-0831-6184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2019-06, Vol.81 (6), p.3840-3853
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_2179408839
source MEDLINE; Wiley Journals; Wiley Online Library Free Content
subjects Algorithms
Angiography
Arteries
Artificial neural networks
Blood vessels
Brain - blood supply
Brain - diagnostic imaging
Cerebral Angiography - methods
Deep Learning
Feature extraction
Feature maps
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Learning
Magnetic resonance
magnetic resonance angiography
Magnetic Resonance Angiography - methods
multistream network
Neural networks
parallel imaging
Sharpness
Teaching methods
time‐of‐flight
title Parallel imaging in time‐of‐flight magnetic resonance angiography using deep multistream convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20imaging%20in%20time%E2%80%90of%E2%80%90flight%20magnetic%20resonance%20angiography%20using%20deep%20multistream%20convolutional%20neural%20networks&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Jun,%20Yohan&rft.date=2019-06&rft.volume=81&rft.issue=6&rft.spage=3840&rft.epage=3853&rft.pages=3840-3853&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.27656&rft_dat=%3Cproquest_cross%3E2197113144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197113144&rft_id=info:pmid/30666723&rfr_iscdi=true