Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs
Corynebacterium glutamicum is an important platform strain that is wildly used in industrial production of amino acids and various other biochemicals. However, due to good genomic stability, C. glutamicum is more difficult to engineer than genetically tractable hosts. Herein, a synthetic small regul...
Gespeichert in:
Veröffentlicht in: | Journal of industrial microbiology & biotechnology 2019-02, Vol.46 (2), p.203-208 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 2 |
container_start_page | 203 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 46 |
creator | Sun, Dehu Chen, Jiuzhou Wang, Yu Li, Mingyue Rao, Deming Guo, Yanmei Chen, Ning Zheng, Ping Sun, Jibin Ma, Yanhe |
description | Corynebacterium glutamicum
is an important platform strain that is wildly used in industrial production of amino acids and various other biochemicals. However, due to good genomic stability,
C. glutamicum
is more difficult to engineer than genetically tractable hosts. Herein, a synthetic small regulatory RNA (sRNA)-based gene knockdown strategy was developed for
C. glutamicum
. The RNA chaperone Hfq from
Escherichia coli
and a rationally designed sRNA consisting of the
E. coli
MicC scaffold and a target binding site were proven to be indispensable for repressing green fluorescent protein expression in
C. glutamicum
. The synthetic sRNA system was applied to improve glutamate production through knockdown of
pyk
,
ldhA
, and
odhA
, resulting almost a threefold increase in glutamate titer and yield. Gene transcription and enzyme activity were down-regulated by up to 80%. The synthetic sRNA system developed holds promise to accelerate
C. glutamicum
metabolic engineering for producing valuable chemicals and fuels. |
doi_str_mv | 10.1007/s10295-018-02128-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179403675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169134632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-39589bac453ee515d44698eec3a60188eccdda16784dfab5b0ef4b043077234c3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtLwPckY1VxkwpICFgtxzkpqZyk2MmQt8clBSQGJh9Z338uH0KnBF8SjJMrTzDNRIxJGmNKaBrzPTQlPJGxEEzsh5rJJBaciQk68n6NMRZJQg_RhGEppWB0it4eoNN5aysTQbOqGgBXNauoLaNF64YGcm268NXX0cr2na4rE8p8iPzQdO_QhZivtbWRg1VvdRcy0fPj3B-jg1JbDye7d4Zeb65fFnfx8un2fjFfxoZz0sUsE2kWRnDBAAQRBecySwEM0zKclYIxRaGJTFJelDoXOYaS55gzHO5g3LAZuhj7blz70YPvVF15A9bqBtreK0qSjOOgQQT0_A-6bnvXhO0CJTPCuGQ0UHSkjGu9d1Cqjatq7QZFsNpaV6N1FdZTX9YVD6GzXes-r6H4iXxrDgAbAb_Z6gX3O_uftp8kRY1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169134632</pqid></control><display><type>article</type><title>Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Oxford Journals Open Access Collection</source><creator>Sun, Dehu ; Chen, Jiuzhou ; Wang, Yu ; Li, Mingyue ; Rao, Deming ; Guo, Yanmei ; Chen, Ning ; Zheng, Ping ; Sun, Jibin ; Ma, Yanhe</creator><creatorcontrib>Sun, Dehu ; Chen, Jiuzhou ; Wang, Yu ; Li, Mingyue ; Rao, Deming ; Guo, Yanmei ; Chen, Ning ; Zheng, Ping ; Sun, Jibin ; Ma, Yanhe</creatorcontrib><description>Corynebacterium glutamicum
is an important platform strain that is wildly used in industrial production of amino acids and various other biochemicals. However, due to good genomic stability,
C. glutamicum
is more difficult to engineer than genetically tractable hosts. Herein, a synthetic small regulatory RNA (sRNA)-based gene knockdown strategy was developed for
C. glutamicum
. The RNA chaperone Hfq from
Escherichia coli
and a rationally designed sRNA consisting of the
E. coli
MicC scaffold and a target binding site were proven to be indispensable for repressing green fluorescent protein expression in
C. glutamicum
. The synthetic sRNA system was applied to improve glutamate production through knockdown of
pyk
,
ldhA
, and
odhA
, resulting almost a threefold increase in glutamate titer and yield. Gene transcription and enzyme activity were down-regulated by up to 80%. The synthetic sRNA system developed holds promise to accelerate
C. glutamicum
metabolic engineering for producing valuable chemicals and fuels.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-018-02128-4</identifier><identifier>PMID: 30666532</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amino acids ; Bacterial Proteins - genetics ; Binding sites ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biotechnology ; Biotechnology Methods - Short Communication ; Corynebacterium glutamicum ; Corynebacterium glutamicum - genetics ; Corynebacterium glutamicum - metabolism ; E coli ; Enzymatic activity ; Enzyme activity ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fluorescence ; Gene Expression Regulation, Bacterial ; Gene Knockdown Techniques ; Genetic Engineering ; Genomic Instability ; Glutamic Acid - biosynthesis ; Green fluorescent protein ; Green Fluorescent Proteins ; Host Factor 1 Protein - genetics ; Host Factor 1 Protein - metabolism ; Inorganic Chemistry ; Life Sciences ; Metabolic Engineering ; Metabolism ; Microbiology ; Organic chemistry ; Osmosis ; Proteins ; Ribonucleic acid ; RNA ; RNA - genetics ; RNA - metabolism ; Transcription</subject><ispartof>Journal of industrial microbiology & biotechnology, 2019-02, Vol.46 (2), p.203-208</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2019</rights><rights>Journal of Industrial Microbiology & Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-39589bac453ee515d44698eec3a60188eccdda16784dfab5b0ef4b043077234c3</citedby><cites>FETCH-LOGICAL-c441t-39589bac453ee515d44698eec3a60188eccdda16784dfab5b0ef4b043077234c3</cites><orcidid>0000-0001-9434-9892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-018-02128-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-018-02128-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30666532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Dehu</creatorcontrib><creatorcontrib>Chen, Jiuzhou</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Li, Mingyue</creatorcontrib><creatorcontrib>Rao, Deming</creatorcontrib><creatorcontrib>Guo, Yanmei</creatorcontrib><creatorcontrib>Chen, Ning</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><creatorcontrib>Sun, Jibin</creatorcontrib><creatorcontrib>Ma, Yanhe</creatorcontrib><title>Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>Corynebacterium glutamicum
is an important platform strain that is wildly used in industrial production of amino acids and various other biochemicals. However, due to good genomic stability,
C. glutamicum
is more difficult to engineer than genetically tractable hosts. Herein, a synthetic small regulatory RNA (sRNA)-based gene knockdown strategy was developed for
C. glutamicum
. The RNA chaperone Hfq from
Escherichia coli
and a rationally designed sRNA consisting of the
E. coli
MicC scaffold and a target binding site were proven to be indispensable for repressing green fluorescent protein expression in
C. glutamicum
. The synthetic sRNA system was applied to improve glutamate production through knockdown of
pyk
,
ldhA
, and
odhA
, resulting almost a threefold increase in glutamate titer and yield. Gene transcription and enzyme activity were down-regulated by up to 80%. The synthetic sRNA system developed holds promise to accelerate
C. glutamicum
metabolic engineering for producing valuable chemicals and fuels.</description><subject>Amino acids</subject><subject>Bacterial Proteins - genetics</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Biotechnology Methods - Short Communication</subject><subject>Corynebacterium glutamicum</subject><subject>Corynebacterium glutamicum - genetics</subject><subject>Corynebacterium glutamicum - metabolism</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Knockdown Techniques</subject><subject>Genetic Engineering</subject><subject>Genomic Instability</subject><subject>Glutamic Acid - biosynthesis</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins</subject><subject>Host Factor 1 Protein - genetics</subject><subject>Host Factor 1 Protein - metabolism</subject><subject>Inorganic Chemistry</subject><subject>Life Sciences</subject><subject>Metabolic Engineering</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Organic chemistry</subject><subject>Osmosis</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - genetics</subject><subject>RNA - metabolism</subject><subject>Transcription</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOwzAUhi0EoqXwAgwoEgtLwPckY1VxkwpICFgtxzkpqZyk2MmQt8clBSQGJh9Z338uH0KnBF8SjJMrTzDNRIxJGmNKaBrzPTQlPJGxEEzsh5rJJBaciQk68n6NMRZJQg_RhGEppWB0it4eoNN5aysTQbOqGgBXNauoLaNF64YGcm268NXX0cr2na4rE8p8iPzQdO_QhZivtbWRg1VvdRcy0fPj3B-jg1JbDye7d4Zeb65fFnfx8un2fjFfxoZz0sUsE2kWRnDBAAQRBecySwEM0zKclYIxRaGJTFJelDoXOYaS55gzHO5g3LAZuhj7blz70YPvVF15A9bqBtreK0qSjOOgQQT0_A-6bnvXhO0CJTPCuGQ0UHSkjGu9d1Cqjatq7QZFsNpaV6N1FdZTX9YVD6GzXes-r6H4iXxrDgAbAb_Z6gX3O_uftp8kRY1E</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Sun, Dehu</creator><creator>Chen, Jiuzhou</creator><creator>Wang, Yu</creator><creator>Li, Mingyue</creator><creator>Rao, Deming</creator><creator>Guo, Yanmei</creator><creator>Chen, Ning</creator><creator>Zheng, Ping</creator><creator>Sun, Jibin</creator><creator>Ma, Yanhe</creator><general>Springer International Publishing</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9434-9892</orcidid></search><sort><creationdate>20190201</creationdate><title>Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs</title><author>Sun, Dehu ; Chen, Jiuzhou ; Wang, Yu ; Li, Mingyue ; Rao, Deming ; Guo, Yanmei ; Chen, Ning ; Zheng, Ping ; Sun, Jibin ; Ma, Yanhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-39589bac453ee515d44698eec3a60188eccdda16784dfab5b0ef4b043077234c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Bacterial Proteins - genetics</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Biotechnology Methods - Short Communication</topic><topic>Corynebacterium glutamicum</topic><topic>Corynebacterium glutamicum - genetics</topic><topic>Corynebacterium glutamicum - metabolism</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Knockdown Techniques</topic><topic>Genetic Engineering</topic><topic>Genomic Instability</topic><topic>Glutamic Acid - biosynthesis</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins</topic><topic>Host Factor 1 Protein - genetics</topic><topic>Host Factor 1 Protein - metabolism</topic><topic>Inorganic Chemistry</topic><topic>Life Sciences</topic><topic>Metabolic Engineering</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Organic chemistry</topic><topic>Osmosis</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - genetics</topic><topic>RNA - metabolism</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Dehu</creatorcontrib><creatorcontrib>Chen, Jiuzhou</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Li, Mingyue</creatorcontrib><creatorcontrib>Rao, Deming</creatorcontrib><creatorcontrib>Guo, Yanmei</creatorcontrib><creatorcontrib>Chen, Ning</creatorcontrib><creatorcontrib>Zheng, Ping</creatorcontrib><creatorcontrib>Sun, Jibin</creatorcontrib><creatorcontrib>Ma, Yanhe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Dehu</au><au>Chen, Jiuzhou</au><au>Wang, Yu</au><au>Li, Mingyue</au><au>Rao, Deming</au><au>Guo, Yanmei</au><au>Chen, Ning</au><au>Zheng, Ping</au><au>Sun, Jibin</au><au>Ma, Yanhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>46</volume><issue>2</issue><spage>203</spage><epage>208</epage><pages>203-208</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>Corynebacterium glutamicum
is an important platform strain that is wildly used in industrial production of amino acids and various other biochemicals. However, due to good genomic stability,
C. glutamicum
is more difficult to engineer than genetically tractable hosts. Herein, a synthetic small regulatory RNA (sRNA)-based gene knockdown strategy was developed for
C. glutamicum
. The RNA chaperone Hfq from
Escherichia coli
and a rationally designed sRNA consisting of the
E. coli
MicC scaffold and a target binding site were proven to be indispensable for repressing green fluorescent protein expression in
C. glutamicum
. The synthetic sRNA system was applied to improve glutamate production through knockdown of
pyk
,
ldhA
, and
odhA
, resulting almost a threefold increase in glutamate titer and yield. Gene transcription and enzyme activity were down-regulated by up to 80%. The synthetic sRNA system developed holds promise to accelerate
C. glutamicum
metabolic engineering for producing valuable chemicals and fuels.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30666532</pmid><doi>10.1007/s10295-018-02128-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9434-9892</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2019-02, Vol.46 (2), p.203-208 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179403675 |
source | MEDLINE; SpringerNature Journals; Oxford Journals Open Access Collection |
subjects | Amino acids Bacterial Proteins - genetics Binding sites Biochemistry Bioinformatics Biomedical and Life Sciences Biotechnology Biotechnology Methods - Short Communication Corynebacterium glutamicum Corynebacterium glutamicum - genetics Corynebacterium glutamicum - metabolism E coli Enzymatic activity Enzyme activity Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fluorescence Gene Expression Regulation, Bacterial Gene Knockdown Techniques Genetic Engineering Genomic Instability Glutamic Acid - biosynthesis Green fluorescent protein Green Fluorescent Proteins Host Factor 1 Protein - genetics Host Factor 1 Protein - metabolism Inorganic Chemistry Life Sciences Metabolic Engineering Metabolism Microbiology Organic chemistry Osmosis Proteins Ribonucleic acid RNA RNA - genetics RNA - metabolism Transcription |
title | Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Corynebacterium%20glutamicum%20by%20synthetic%20small%20regulatory%20RNAs&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Sun,%20Dehu&rft.date=2019-02-01&rft.volume=46&rft.issue=2&rft.spage=203&rft.epage=208&rft.pages=203-208&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-018-02128-4&rft_dat=%3Cproquest_cross%3E2169134632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169134632&rft_id=info:pmid/30666532&rfr_iscdi=true |