On the application of balanced steady-state free precession to MR microscopy

Objective The applicability of the balanced steady-state free precession (bSSFP) sequence to the field of MR microscopy was investigated, since the potentially high SNR makes bSSFP attractive. However, particularly at ultra-high magnetic fields, a number of constraints emerge: the frequency sensitiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) N.Y.), 2019-08, Vol.32 (4), p.437-447
Hauptverfasser: Bär, Sébastien, Oerther, Thomas, Weigel, Matthias, Müller, Angelina, Hucker, Patrick, Korvink, Jan G., Ko, Cheng-Wen, Wapler, Matthias C., Leupold, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 4
container_start_page 437
container_title Magma (New York, N.Y.)
container_volume 32
creator Bär, Sébastien
Oerther, Thomas
Weigel, Matthias
Müller, Angelina
Hucker, Patrick
Korvink, Jan G.
Ko, Cheng-Wen
Wapler, Matthias C.
Leupold, Jochen
description Objective The applicability of the balanced steady-state free precession (bSSFP) sequence to the field of MR microscopy was investigated, since the potentially high SNR makes bSSFP attractive. However, particularly at ultra-high magnetic fields, a number of constraints emerge: the frequency sensitivity of the bSSFP signal, the duty cycle of the imaging gradients, and the intrinsic diffusion attenuation of the steady state due to the imaging gradients. Materials and methods Optimization of the bSSFP sequence was performed on three imaging systems (7 T and 9.4 T) suited for MR microscopy. Since biological samples are often imaged in the very proximity of materials from sample containers/holder or devices such as electrodes, several microscopy phantoms representing such circumstances were fabricated and examined with 3D bSSFP. Results Artifact-free microscopic bSSFP images could be obtained with voxel sizes down to 16 µm × 16 µm × 78 µm and with an SNR gain of 25% over standard gradient echo images. Conclusion With appropriate choice of phantom materials, optimization of the flip angle to the diffusion-attenuated steady state and protocols considering duty-cycle limitations, bSSFP can be a valuable tool in MR microscopy.
doi_str_mv 10.1007/s10334-019-00736-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179400092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179400092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-8b61b2d2d6b6d35ed0f9e97772d5bab408bb88d34cc7f690e66936a0dbac518c3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmPwBzigHLkEnKRNmyOa-JKGJiE4R_lwodPWlqQ97N_TscGRk2X58Sv7IeSSww0HKG4TBykzBlyzsZWKZUdkymUuWKkUPyZT0KpkucjkhJyltAIQPAd5SiYSVKYLKKdksWxo_4nUdt269rav24a2FXV2bRuPgaYebdiy1NseaRURaRfRY0o7sG_pyyvd1D62ybfd9pycVHad8OJQZ-T94f5t_sQWy8fn-d2CeSnznpVOcSeCCMqpIHMMUGnURVGIkDvrMiidK8sgM--LSmlApbRUFoKzPuellzNyvc_tYvs1YOrNpk4e1-PN2A7JCF7oDAC0GFGxR3c3poiV6WK9sXFrOJidRbO3aEaL5seiycalq0P-4DYY_lZ-tY2A3ANpHDUfGM2qHWIz_vxf7Dfe831U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179400092</pqid></control><display><type>article</type><title>On the application of balanced steady-state free precession to MR microscopy</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Bär, Sébastien ; Oerther, Thomas ; Weigel, Matthias ; Müller, Angelina ; Hucker, Patrick ; Korvink, Jan G. ; Ko, Cheng-Wen ; Wapler, Matthias C. ; Leupold, Jochen</creator><creatorcontrib>Bär, Sébastien ; Oerther, Thomas ; Weigel, Matthias ; Müller, Angelina ; Hucker, Patrick ; Korvink, Jan G. ; Ko, Cheng-Wen ; Wapler, Matthias C. ; Leupold, Jochen</creatorcontrib><description>Objective The applicability of the balanced steady-state free precession (bSSFP) sequence to the field of MR microscopy was investigated, since the potentially high SNR makes bSSFP attractive. However, particularly at ultra-high magnetic fields, a number of constraints emerge: the frequency sensitivity of the bSSFP signal, the duty cycle of the imaging gradients, and the intrinsic diffusion attenuation of the steady state due to the imaging gradients. Materials and methods Optimization of the bSSFP sequence was performed on three imaging systems (7 T and 9.4 T) suited for MR microscopy. Since biological samples are often imaged in the very proximity of materials from sample containers/holder or devices such as electrodes, several microscopy phantoms representing such circumstances were fabricated and examined with 3D bSSFP. Results Artifact-free microscopic bSSFP images could be obtained with voxel sizes down to 16 µm × 16 µm × 78 µm and with an SNR gain of 25% over standard gradient echo images. Conclusion With appropriate choice of phantom materials, optimization of the flip angle to the diffusion-attenuated steady state and protocols considering duty-cycle limitations, bSSFP can be a valuable tool in MR microscopy.</description><identifier>ISSN: 0968-5243</identifier><identifier>EISSN: 1352-8661</identifier><identifier>DOI: 10.1007/s10334-019-00736-4</identifier><identifier>PMID: 30649708</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Biomedical Engineering and Bioengineering ; Computer Appl. in Life Sciences ; Computer Simulation ; Health Informatics ; Image Enhancement ; Image Interpretation, Computer-Assisted - methods ; Image Processing, Computer-Assisted - methods ; Imaging ; Magnetic Fields ; Magnetic Resonance Imaging - methods ; Medicine ; Medicine &amp; Public Health ; Microscopy - methods ; Phantoms, Imaging ; Radiology ; Reproducibility of Results ; Research Article ; Signal-To-Noise Ratio ; Solid State Physics ; Water</subject><ispartof>Magma (New York, N.Y.), 2019-08, Vol.32 (4), p.437-447</ispartof><rights>European Society for Magnetic Resonance in Medicine and Biology (ESMRMB) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-8b61b2d2d6b6d35ed0f9e97772d5bab408bb88d34cc7f690e66936a0dbac518c3</cites><orcidid>0000-0001-9453-8095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10334-019-00736-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10334-019-00736-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30649708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bär, Sébastien</creatorcontrib><creatorcontrib>Oerther, Thomas</creatorcontrib><creatorcontrib>Weigel, Matthias</creatorcontrib><creatorcontrib>Müller, Angelina</creatorcontrib><creatorcontrib>Hucker, Patrick</creatorcontrib><creatorcontrib>Korvink, Jan G.</creatorcontrib><creatorcontrib>Ko, Cheng-Wen</creatorcontrib><creatorcontrib>Wapler, Matthias C.</creatorcontrib><creatorcontrib>Leupold, Jochen</creatorcontrib><title>On the application of balanced steady-state free precession to MR microscopy</title><title>Magma (New York, N.Y.)</title><addtitle>Magn Reson Mater Phy</addtitle><addtitle>MAGMA</addtitle><description>Objective The applicability of the balanced steady-state free precession (bSSFP) sequence to the field of MR microscopy was investigated, since the potentially high SNR makes bSSFP attractive. However, particularly at ultra-high magnetic fields, a number of constraints emerge: the frequency sensitivity of the bSSFP signal, the duty cycle of the imaging gradients, and the intrinsic diffusion attenuation of the steady state due to the imaging gradients. Materials and methods Optimization of the bSSFP sequence was performed on three imaging systems (7 T and 9.4 T) suited for MR microscopy. Since biological samples are often imaged in the very proximity of materials from sample containers/holder or devices such as electrodes, several microscopy phantoms representing such circumstances were fabricated and examined with 3D bSSFP. Results Artifact-free microscopic bSSFP images could be obtained with voxel sizes down to 16 µm × 16 µm × 78 µm and with an SNR gain of 25% over standard gradient echo images. Conclusion With appropriate choice of phantom materials, optimization of the flip angle to the diffusion-attenuated steady state and protocols considering duty-cycle limitations, bSSFP can be a valuable tool in MR microscopy.</description><subject>Algorithms</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Simulation</subject><subject>Health Informatics</subject><subject>Image Enhancement</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Magnetic Fields</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Microscopy - methods</subject><subject>Phantoms, Imaging</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Research Article</subject><subject>Signal-To-Noise Ratio</subject><subject>Solid State Physics</subject><subject>Water</subject><issn>0968-5243</issn><issn>1352-8661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PwzAMhiMEYmPwBzigHLkEnKRNmyOa-JKGJiE4R_lwodPWlqQ97N_TscGRk2X58Sv7IeSSww0HKG4TBykzBlyzsZWKZUdkymUuWKkUPyZT0KpkucjkhJyltAIQPAd5SiYSVKYLKKdksWxo_4nUdt269rav24a2FXV2bRuPgaYebdiy1NseaRURaRfRY0o7sG_pyyvd1D62ybfd9pycVHad8OJQZ-T94f5t_sQWy8fn-d2CeSnznpVOcSeCCMqpIHMMUGnURVGIkDvrMiidK8sgM--LSmlApbRUFoKzPuellzNyvc_tYvs1YOrNpk4e1-PN2A7JCF7oDAC0GFGxR3c3poiV6WK9sXFrOJidRbO3aEaL5seiycalq0P-4DYY_lZ-tY2A3ANpHDUfGM2qHWIz_vxf7Dfe831U</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Bär, Sébastien</creator><creator>Oerther, Thomas</creator><creator>Weigel, Matthias</creator><creator>Müller, Angelina</creator><creator>Hucker, Patrick</creator><creator>Korvink, Jan G.</creator><creator>Ko, Cheng-Wen</creator><creator>Wapler, Matthias C.</creator><creator>Leupold, Jochen</creator><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9453-8095</orcidid></search><sort><creationdate>20190801</creationdate><title>On the application of balanced steady-state free precession to MR microscopy</title><author>Bär, Sébastien ; Oerther, Thomas ; Weigel, Matthias ; Müller, Angelina ; Hucker, Patrick ; Korvink, Jan G. ; Ko, Cheng-Wen ; Wapler, Matthias C. ; Leupold, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-8b61b2d2d6b6d35ed0f9e97772d5bab408bb88d34cc7f690e66936a0dbac518c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Simulation</topic><topic>Health Informatics</topic><topic>Image Enhancement</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Magnetic Fields</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Microscopy - methods</topic><topic>Phantoms, Imaging</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Research Article</topic><topic>Signal-To-Noise Ratio</topic><topic>Solid State Physics</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bär, Sébastien</creatorcontrib><creatorcontrib>Oerther, Thomas</creatorcontrib><creatorcontrib>Weigel, Matthias</creatorcontrib><creatorcontrib>Müller, Angelina</creatorcontrib><creatorcontrib>Hucker, Patrick</creatorcontrib><creatorcontrib>Korvink, Jan G.</creatorcontrib><creatorcontrib>Ko, Cheng-Wen</creatorcontrib><creatorcontrib>Wapler, Matthias C.</creatorcontrib><creatorcontrib>Leupold, Jochen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magma (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bär, Sébastien</au><au>Oerther, Thomas</au><au>Weigel, Matthias</au><au>Müller, Angelina</au><au>Hucker, Patrick</au><au>Korvink, Jan G.</au><au>Ko, Cheng-Wen</au><au>Wapler, Matthias C.</au><au>Leupold, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the application of balanced steady-state free precession to MR microscopy</atitle><jtitle>Magma (New York, N.Y.)</jtitle><stitle>Magn Reson Mater Phy</stitle><addtitle>MAGMA</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>32</volume><issue>4</issue><spage>437</spage><epage>447</epage><pages>437-447</pages><issn>0968-5243</issn><eissn>1352-8661</eissn><abstract>Objective The applicability of the balanced steady-state free precession (bSSFP) sequence to the field of MR microscopy was investigated, since the potentially high SNR makes bSSFP attractive. However, particularly at ultra-high magnetic fields, a number of constraints emerge: the frequency sensitivity of the bSSFP signal, the duty cycle of the imaging gradients, and the intrinsic diffusion attenuation of the steady state due to the imaging gradients. Materials and methods Optimization of the bSSFP sequence was performed on three imaging systems (7 T and 9.4 T) suited for MR microscopy. Since biological samples are often imaged in the very proximity of materials from sample containers/holder or devices such as electrodes, several microscopy phantoms representing such circumstances were fabricated and examined with 3D bSSFP. Results Artifact-free microscopic bSSFP images could be obtained with voxel sizes down to 16 µm × 16 µm × 78 µm and with an SNR gain of 25% over standard gradient echo images. Conclusion With appropriate choice of phantom materials, optimization of the flip angle to the diffusion-attenuated steady state and protocols considering duty-cycle limitations, bSSFP can be a valuable tool in MR microscopy.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30649708</pmid><doi>10.1007/s10334-019-00736-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9453-8095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0968-5243
ispartof Magma (New York, N.Y.), 2019-08, Vol.32 (4), p.437-447
issn 0968-5243
1352-8661
language eng
recordid cdi_proquest_miscellaneous_2179400092
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Biomedical Engineering and Bioengineering
Computer Appl. in Life Sciences
Computer Simulation
Health Informatics
Image Enhancement
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Imaging
Magnetic Fields
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Microscopy - methods
Phantoms, Imaging
Radiology
Reproducibility of Results
Research Article
Signal-To-Noise Ratio
Solid State Physics
Water
title On the application of balanced steady-state free precession to MR microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20application%20of%20balanced%20steady-state%20free%20precession%20to%20MR%20microscopy&rft.jtitle=Magma%20(New%20York,%20N.Y.)&rft.au=B%C3%A4r,%20S%C3%A9bastien&rft.date=2019-08-01&rft.volume=32&rft.issue=4&rft.spage=437&rft.epage=447&rft.pages=437-447&rft.issn=0968-5243&rft.eissn=1352-8661&rft_id=info:doi/10.1007/s10334-019-00736-4&rft_dat=%3Cproquest_cross%3E2179400092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179400092&rft_id=info:pmid/30649708&rfr_iscdi=true