Enhanced CO2 capture by reducing cation–anion interactions in hydroxyl-pyridine anion-based ionic liquids
In this work, an efficient strategy for improving CO2 capture based on anion-functionalized ionic liquids (ILs) by reducing cation–anion interactions in ILs was reported. The influence of the cationic species on CO2 absorption was investigated using 2-hydroxyl pyridium anions ([2-Op]) as a probe. CO...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2019-02, Vol.48 (7), p.2300-2307 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2307 |
---|---|
container_issue | 7 |
container_start_page | 2300 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 48 |
creator | Xiao-Yan, Luo Xiao-Yan, Chen Rong-Xing Qiu Bao-You, Pei Wei, Yi Hu, Min Jin-Qing, Lin Jing-Yang, Zhang Geng-Geng Luo |
description | In this work, an efficient strategy for improving CO2 capture based on anion-functionalized ionic liquids (ILs) by reducing cation–anion interactions in ILs was reported. The influence of the cationic species on CO2 absorption was investigated using 2-hydroxyl pyridium anions ([2-Op]) as a probe. CO2 capture experiments indicated that the CO2 absorption capacity in [2-Op] anion-based ILs varied from 0.94 to 1.69 mol CO2 per mol IL at 30 °C and 1 atm. Spectroscopic analysis and quantum chemical calculations suggested that the increase of the CO2 absorption capacity may be ascribed to the reduction of the strength of cation–anion interactions in ILs, and stronger cation–anion interactions would make one CO2 site in the [2-Op] anion inactive. Furthermore, the effect of the cation unit on the anion was evidenced by FT-IR spectra, implying that strong interactions between ions may lead to the decrease of the IR absorption wavenumber of hydroxy pyridium and work against CO2 capture. Following this strategy, it was finally found that [Ph-C8eim][2-Op] (Ph-C8eim = 1-N-ethyl-3-N-octyl-2-phenylimidazolium) with weaker cation–anion interactions exhibited a significant increase in the CO2 uptake capacity, and extremely high capacities of 1.69 and 1.83 mol CO2 per mol IL could be achieved at 30 and 20 °C, respectively. The study presented here would be helpful for further designing novel and effective ILs for advancing CO2 capturing performance. |
doi_str_mv | 10.1039/c8dt04680h |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179397875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178594703</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-1c9739c8819e2e768973b6d23fd8f453f94d9e7686e3204108e07d8a0ecde1eb3</originalsourceid><addsrcrecordid>eNpdjrtOwzAYhS0EEqWw8ASWWFgCviW2R1SVi1SpC8yVY_-hLsFJ40QiG-_AG_IkOIAYmM5Fn44OQueUXFHC9bVVrieiUGR7gGZUSJlpxsXhn2fFMTqJcUcIYyRnM_SyDFsTLDi8WDNsTdsPHeByxB24wfrwnLreN-Hz_cOEpNiHHjpjpy6mgLej65q3sc7asfPOB8DfXFaamEaT8xbXfj94F0_RUWXqCGe_OkdPt8vHxX22Wt89LG5WWUtF0WfUasm1VYpqYCALlWJZOMYrpyqR80oLp6e-AM6IoEQBkU4ZAtYBhZLP0eXPbts1-wFiv3n10UJdmwDNEDeMSs21VDJP6MU_dNcMXUjvJkrlWkjC-RcRKWme</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178594703</pqid></control><display><type>article</type><title>Enhanced CO2 capture by reducing cation–anion interactions in hydroxyl-pyridine anion-based ionic liquids</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xiao-Yan, Luo ; Xiao-Yan, Chen ; Rong-Xing Qiu ; Bao-You, Pei ; Wei, Yi ; Hu, Min ; Jin-Qing, Lin ; Jing-Yang, Zhang ; Geng-Geng Luo</creator><creatorcontrib>Xiao-Yan, Luo ; Xiao-Yan, Chen ; Rong-Xing Qiu ; Bao-You, Pei ; Wei, Yi ; Hu, Min ; Jin-Qing, Lin ; Jing-Yang, Zhang ; Geng-Geng Luo</creatorcontrib><description>In this work, an efficient strategy for improving CO2 capture based on anion-functionalized ionic liquids (ILs) by reducing cation–anion interactions in ILs was reported. The influence of the cationic species on CO2 absorption was investigated using 2-hydroxyl pyridium anions ([2-Op]) as a probe. CO2 capture experiments indicated that the CO2 absorption capacity in [2-Op] anion-based ILs varied from 0.94 to 1.69 mol CO2 per mol IL at 30 °C and 1 atm. Spectroscopic analysis and quantum chemical calculations suggested that the increase of the CO2 absorption capacity may be ascribed to the reduction of the strength of cation–anion interactions in ILs, and stronger cation–anion interactions would make one CO2 site in the [2-Op] anion inactive. Furthermore, the effect of the cation unit on the anion was evidenced by FT-IR spectra, implying that strong interactions between ions may lead to the decrease of the IR absorption wavenumber of hydroxy pyridium and work against CO2 capture. Following this strategy, it was finally found that [Ph-C8eim][2-Op] (Ph-C8eim = 1-N-ethyl-3-N-octyl-2-phenylimidazolium) with weaker cation–anion interactions exhibited a significant increase in the CO2 uptake capacity, and extremely high capacities of 1.69 and 1.83 mol CO2 per mol IL could be achieved at 30 and 20 °C, respectively. The study presented here would be helpful for further designing novel and effective ILs for advancing CO2 capturing performance.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c8dt04680h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Anions ; Carbon dioxide ; Carbon sequestration ; Cations ; Infrared spectroscopy ; Ionic liquids ; Ions ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Quantum chemistry ; Wavelengths</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2019-02, Vol.48 (7), p.2300-2307</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiao-Yan, Luo</creatorcontrib><creatorcontrib>Xiao-Yan, Chen</creatorcontrib><creatorcontrib>Rong-Xing Qiu</creatorcontrib><creatorcontrib>Bao-You, Pei</creatorcontrib><creatorcontrib>Wei, Yi</creatorcontrib><creatorcontrib>Hu, Min</creatorcontrib><creatorcontrib>Jin-Qing, Lin</creatorcontrib><creatorcontrib>Jing-Yang, Zhang</creatorcontrib><creatorcontrib>Geng-Geng Luo</creatorcontrib><title>Enhanced CO2 capture by reducing cation–anion interactions in hydroxyl-pyridine anion-based ionic liquids</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>In this work, an efficient strategy for improving CO2 capture based on anion-functionalized ionic liquids (ILs) by reducing cation–anion interactions in ILs was reported. The influence of the cationic species on CO2 absorption was investigated using 2-hydroxyl pyridium anions ([2-Op]) as a probe. CO2 capture experiments indicated that the CO2 absorption capacity in [2-Op] anion-based ILs varied from 0.94 to 1.69 mol CO2 per mol IL at 30 °C and 1 atm. Spectroscopic analysis and quantum chemical calculations suggested that the increase of the CO2 absorption capacity may be ascribed to the reduction of the strength of cation–anion interactions in ILs, and stronger cation–anion interactions would make one CO2 site in the [2-Op] anion inactive. Furthermore, the effect of the cation unit on the anion was evidenced by FT-IR spectra, implying that strong interactions between ions may lead to the decrease of the IR absorption wavenumber of hydroxy pyridium and work against CO2 capture. Following this strategy, it was finally found that [Ph-C8eim][2-Op] (Ph-C8eim = 1-N-ethyl-3-N-octyl-2-phenylimidazolium) with weaker cation–anion interactions exhibited a significant increase in the CO2 uptake capacity, and extremely high capacities of 1.69 and 1.83 mol CO2 per mol IL could be achieved at 30 and 20 °C, respectively. The study presented here would be helpful for further designing novel and effective ILs for advancing CO2 capturing performance.</description><subject>Absorption</subject><subject>Anions</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Cations</subject><subject>Infrared spectroscopy</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Quantum chemistry</subject><subject>Wavelengths</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdjrtOwzAYhS0EEqWw8ASWWFgCviW2R1SVi1SpC8yVY_-hLsFJ40QiG-_AG_IkOIAYmM5Fn44OQueUXFHC9bVVrieiUGR7gGZUSJlpxsXhn2fFMTqJcUcIYyRnM_SyDFsTLDi8WDNsTdsPHeByxB24wfrwnLreN-Hz_cOEpNiHHjpjpy6mgLej65q3sc7asfPOB8DfXFaamEaT8xbXfj94F0_RUWXqCGe_OkdPt8vHxX22Wt89LG5WWUtF0WfUasm1VYpqYCALlWJZOMYrpyqR80oLp6e-AM6IoEQBkU4ZAtYBhZLP0eXPbts1-wFiv3n10UJdmwDNEDeMSs21VDJP6MU_dNcMXUjvJkrlWkjC-RcRKWme</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Xiao-Yan, Luo</creator><creator>Xiao-Yan, Chen</creator><creator>Rong-Xing Qiu</creator><creator>Bao-You, Pei</creator><creator>Wei, Yi</creator><creator>Hu, Min</creator><creator>Jin-Qing, Lin</creator><creator>Jing-Yang, Zhang</creator><creator>Geng-Geng Luo</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190221</creationdate><title>Enhanced CO2 capture by reducing cation–anion interactions in hydroxyl-pyridine anion-based ionic liquids</title><author>Xiao-Yan, Luo ; Xiao-Yan, Chen ; Rong-Xing Qiu ; Bao-You, Pei ; Wei, Yi ; Hu, Min ; Jin-Qing, Lin ; Jing-Yang, Zhang ; Geng-Geng Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-1c9739c8819e2e768973b6d23fd8f453f94d9e7686e3204108e07d8a0ecde1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Anions</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Cations</topic><topic>Infrared spectroscopy</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Quantum chemistry</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao-Yan, Luo</creatorcontrib><creatorcontrib>Xiao-Yan, Chen</creatorcontrib><creatorcontrib>Rong-Xing Qiu</creatorcontrib><creatorcontrib>Bao-You, Pei</creatorcontrib><creatorcontrib>Wei, Yi</creatorcontrib><creatorcontrib>Hu, Min</creatorcontrib><creatorcontrib>Jin-Qing, Lin</creatorcontrib><creatorcontrib>Jing-Yang, Zhang</creatorcontrib><creatorcontrib>Geng-Geng Luo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao-Yan, Luo</au><au>Xiao-Yan, Chen</au><au>Rong-Xing Qiu</au><au>Bao-You, Pei</au><au>Wei, Yi</au><au>Hu, Min</au><au>Jin-Qing, Lin</au><au>Jing-Yang, Zhang</au><au>Geng-Geng Luo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced CO2 capture by reducing cation–anion interactions in hydroxyl-pyridine anion-based ionic liquids</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2019-02-21</date><risdate>2019</risdate><volume>48</volume><issue>7</issue><spage>2300</spage><epage>2307</epage><pages>2300-2307</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>In this work, an efficient strategy for improving CO2 capture based on anion-functionalized ionic liquids (ILs) by reducing cation–anion interactions in ILs was reported. The influence of the cationic species on CO2 absorption was investigated using 2-hydroxyl pyridium anions ([2-Op]) as a probe. CO2 capture experiments indicated that the CO2 absorption capacity in [2-Op] anion-based ILs varied from 0.94 to 1.69 mol CO2 per mol IL at 30 °C and 1 atm. Spectroscopic analysis and quantum chemical calculations suggested that the increase of the CO2 absorption capacity may be ascribed to the reduction of the strength of cation–anion interactions in ILs, and stronger cation–anion interactions would make one CO2 site in the [2-Op] anion inactive. Furthermore, the effect of the cation unit on the anion was evidenced by FT-IR spectra, implying that strong interactions between ions may lead to the decrease of the IR absorption wavenumber of hydroxy pyridium and work against CO2 capture. Following this strategy, it was finally found that [Ph-C8eim][2-Op] (Ph-C8eim = 1-N-ethyl-3-N-octyl-2-phenylimidazolium) with weaker cation–anion interactions exhibited a significant increase in the CO2 uptake capacity, and extremely high capacities of 1.69 and 1.83 mol CO2 per mol IL could be achieved at 30 and 20 °C, respectively. The study presented here would be helpful for further designing novel and effective ILs for advancing CO2 capturing performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8dt04680h</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2019-02, Vol.48 (7), p.2300-2307 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179397875 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Absorption Anions Carbon dioxide Carbon sequestration Cations Infrared spectroscopy Ionic liquids Ions NMR Nuclear magnetic resonance Organic chemistry Quantum chemistry Wavelengths |
title | Enhanced CO2 capture by reducing cation–anion interactions in hydroxyl-pyridine anion-based ionic liquids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20CO2%20capture%20by%20reducing%20cation%E2%80%93anion%20interactions%20in%20hydroxyl-pyridine%20anion-based%20ionic%20liquids&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Xiao-Yan,%20Luo&rft.date=2019-02-21&rft.volume=48&rft.issue=7&rft.spage=2300&rft.epage=2307&rft.pages=2300-2307&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c8dt04680h&rft_dat=%3Cproquest%3E2178594703%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2178594703&rft_id=info:pmid/&rfr_iscdi=true |