Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting

Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2019-04, Vol.12 (8), p.1576-1590
Hauptverfasser: Wang, Chao, Lan, Feifei, He, Zhenfeng, Xie, Xiaofeng, Zhao, Yuhong, Hou, Hua, Guo, Li, Murugadoss, Vignesh, Liu, Hu, Shao, Qian, Gao, Qiang, Ding, Tao, Wei, Renbo, Guo, Zhanhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1590
container_issue 8
container_start_page 1576
container_title ChemSusChem
container_volume 12
creator Wang, Chao
Lan, Feifei
He, Zhenfeng
Xie, Xiaofeng
Zhao, Yuhong
Hou, Hua
Guo, Li
Murugadoss, Vignesh
Liu, Hu
Shao, Qian
Gao, Qiang
Ding, Tao
Wei, Renbo
Guo, Zhanhu
description Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts are key materials in the SPE water electrolysis. At the anode side, electrode materials catalyzing the oxygen evolution reaction (OER) require specific properties. Among the reported materials, only iridium presents high activity and is more stable. In this Minireview, an application overview of single iridium metal and its oxide catalysts—binary, ternary, and multicomponent catalysts of iridium oxides and supported composite catalysts—for the OER in SPE water electrolysis is presented. Two main strategies to improve the activity of an electrocatalyst system, namely, increasing the number of active sites and the intrinsic activity of each active site, are reviewed with detailed examples. The challenges and perspectives in this field are also discussed. SPEctacular splits: Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Water electrolysis at the anode produces O2 and four protons near the electrode surface for each oxygen molecule. Hydrogen ions are transported through the proton exchange membrane to generate H2 gas near the cathode. An overview of various electrocatalysts for the oxygen evolution reaction in SPE water electrolysis is presented.
doi_str_mv 10.1002/cssc.201802873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179397564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179397564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5163-caf20214f56189f41771e9807295eafb4f970522fa02463584975b9d46c418b43</originalsourceid><addsrcrecordid>eNqF0MtqGzEUBmARGnJxss2yDHTTjR3dL8t2SFKDoQEnJDsha6Qio_G4kobgXR8hz5gnybhOXOgmKx3Bd34OPwAXCE4QhPjS5mwnGCIJsRTkAJwgyemYcfr4aT8TdAxOc15CyKHi_AgcE8gZl1iegMdpCk3o25c_z99Ndk1Vm2LiJpdc-S5V8y6Gprrt4qZ1qbqKzpY0fIp7n-1fXoKtHkwZyHwdQylh9esMHHoTszt_e0fg_vrqrv4xnv28mdbfZmPLECdjazyGGFHPOJLKUyQEckpCgRVzxi-oVwIyjL2BmHLCJFWCLVRDuaVILigZga-73HXqfvcuF92GbF2MZuW6PmuMhCLDDt_SL__RZden1XCdxhhhQQRTZFCTnbKpyzk5r9cptCZtNIJ627nedq73nQ8Ln99i-0Xrmj1_L3kAageeQnSbD-J0PZ_X_8JfAUhWjds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212737593</pqid></control><display><type>article</type><title>Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting</title><source>Wiley Online Library All Journals</source><creator>Wang, Chao ; Lan, Feifei ; He, Zhenfeng ; Xie, Xiaofeng ; Zhao, Yuhong ; Hou, Hua ; Guo, Li ; Murugadoss, Vignesh ; Liu, Hu ; Shao, Qian ; Gao, Qiang ; Ding, Tao ; Wei, Renbo ; Guo, Zhanhu</creator><creatorcontrib>Wang, Chao ; Lan, Feifei ; He, Zhenfeng ; Xie, Xiaofeng ; Zhao, Yuhong ; Hou, Hua ; Guo, Li ; Murugadoss, Vignesh ; Liu, Hu ; Shao, Qian ; Gao, Qiang ; Ding, Tao ; Wei, Renbo ; Guo, Zhanhu</creatorcontrib><description>Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts are key materials in the SPE water electrolysis. At the anode side, electrode materials catalyzing the oxygen evolution reaction (OER) require specific properties. Among the reported materials, only iridium presents high activity and is more stable. In this Minireview, an application overview of single iridium metal and its oxide catalysts—binary, ternary, and multicomponent catalysts of iridium oxides and supported composite catalysts—for the OER in SPE water electrolysis is presented. Two main strategies to improve the activity of an electrocatalyst system, namely, increasing the number of active sites and the intrinsic activity of each active site, are reviewed with detailed examples. The challenges and perspectives in this field are also discussed. SPEctacular splits: Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Water electrolysis at the anode produces O2 and four protons near the electrode surface for each oxygen molecule. Hydrogen ions are transported through the proton exchange membrane to generate H2 gas near the cathode. An overview of various electrocatalysts for the oxygen evolution reaction in SPE water electrolysis is presented.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201802873</identifier><identifier>PMID: 30656828</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Chemical energy ; Electrocatalysts ; electrochemistry ; Electrode materials ; Electrolysis ; Electrolytes ; Energy conversion ; Energy storage ; Hydrogen production ; Iridium ; Organic chemistry ; Oxygen evolution reactions ; Polymers ; Renewable energy sources ; solid polymer electrolytes ; supported catalysts ; Water splitting</subject><ispartof>ChemSusChem, 2019-04, Vol.12 (8), p.1576-1590</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5163-caf20214f56189f41771e9807295eafb4f970522fa02463584975b9d46c418b43</citedby><cites>FETCH-LOGICAL-c5163-caf20214f56189f41771e9807295eafb4f970522fa02463584975b9d46c418b43</cites><orcidid>0000-0003-3125-3206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201802873$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201802873$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30656828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Lan, Feifei</creatorcontrib><creatorcontrib>He, Zhenfeng</creatorcontrib><creatorcontrib>Xie, Xiaofeng</creatorcontrib><creatorcontrib>Zhao, Yuhong</creatorcontrib><creatorcontrib>Hou, Hua</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Murugadoss, Vignesh</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Wei, Renbo</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts are key materials in the SPE water electrolysis. At the anode side, electrode materials catalyzing the oxygen evolution reaction (OER) require specific properties. Among the reported materials, only iridium presents high activity and is more stable. In this Minireview, an application overview of single iridium metal and its oxide catalysts—binary, ternary, and multicomponent catalysts of iridium oxides and supported composite catalysts—for the OER in SPE water electrolysis is presented. Two main strategies to improve the activity of an electrocatalyst system, namely, increasing the number of active sites and the intrinsic activity of each active site, are reviewed with detailed examples. The challenges and perspectives in this field are also discussed. SPEctacular splits: Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Water electrolysis at the anode produces O2 and four protons near the electrode surface for each oxygen molecule. Hydrogen ions are transported through the proton exchange membrane to generate H2 gas near the cathode. An overview of various electrocatalysts for the oxygen evolution reaction in SPE water electrolysis is presented.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical energy</subject><subject>Electrocatalysts</subject><subject>electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Hydrogen production</subject><subject>Iridium</subject><subject>Organic chemistry</subject><subject>Oxygen evolution reactions</subject><subject>Polymers</subject><subject>Renewable energy sources</subject><subject>solid polymer electrolytes</subject><subject>supported catalysts</subject><subject>Water splitting</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0MtqGzEUBmARGnJxss2yDHTTjR3dL8t2SFKDoQEnJDsha6Qio_G4kobgXR8hz5gnybhOXOgmKx3Bd34OPwAXCE4QhPjS5mwnGCIJsRTkAJwgyemYcfr4aT8TdAxOc15CyKHi_AgcE8gZl1iegMdpCk3o25c_z99Ndk1Vm2LiJpdc-S5V8y6Gprrt4qZ1qbqKzpY0fIp7n-1fXoKtHkwZyHwdQylh9esMHHoTszt_e0fg_vrqrv4xnv28mdbfZmPLECdjazyGGFHPOJLKUyQEckpCgRVzxi-oVwIyjL2BmHLCJFWCLVRDuaVILigZga-73HXqfvcuF92GbF2MZuW6PmuMhCLDDt_SL__RZden1XCdxhhhQQRTZFCTnbKpyzk5r9cptCZtNIJ627nedq73nQ8Ln99i-0Xrmj1_L3kAageeQnSbD-J0PZ_X_8JfAUhWjds</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Wang, Chao</creator><creator>Lan, Feifei</creator><creator>He, Zhenfeng</creator><creator>Xie, Xiaofeng</creator><creator>Zhao, Yuhong</creator><creator>Hou, Hua</creator><creator>Guo, Li</creator><creator>Murugadoss, Vignesh</creator><creator>Liu, Hu</creator><creator>Shao, Qian</creator><creator>Gao, Qiang</creator><creator>Ding, Tao</creator><creator>Wei, Renbo</creator><creator>Guo, Zhanhu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3125-3206</orcidid></search><sort><creationdate>20190423</creationdate><title>Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting</title><author>Wang, Chao ; Lan, Feifei ; He, Zhenfeng ; Xie, Xiaofeng ; Zhao, Yuhong ; Hou, Hua ; Guo, Li ; Murugadoss, Vignesh ; Liu, Hu ; Shao, Qian ; Gao, Qiang ; Ding, Tao ; Wei, Renbo ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5163-caf20214f56189f41771e9807295eafb4f970522fa02463584975b9d46c418b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical energy</topic><topic>Electrocatalysts</topic><topic>electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Hydrogen production</topic><topic>Iridium</topic><topic>Organic chemistry</topic><topic>Oxygen evolution reactions</topic><topic>Polymers</topic><topic>Renewable energy sources</topic><topic>solid polymer electrolytes</topic><topic>supported catalysts</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Lan, Feifei</creatorcontrib><creatorcontrib>He, Zhenfeng</creatorcontrib><creatorcontrib>Xie, Xiaofeng</creatorcontrib><creatorcontrib>Zhao, Yuhong</creatorcontrib><creatorcontrib>Hou, Hua</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Murugadoss, Vignesh</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Wei, Renbo</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chao</au><au>Lan, Feifei</au><au>He, Zhenfeng</au><au>Xie, Xiaofeng</au><au>Zhao, Yuhong</au><au>Hou, Hua</au><au>Guo, Li</au><au>Murugadoss, Vignesh</au><au>Liu, Hu</au><au>Shao, Qian</au><au>Gao, Qiang</au><au>Ding, Tao</au><au>Wei, Renbo</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>12</volume><issue>8</issue><spage>1576</spage><epage>1590</epage><pages>1576-1590</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts are key materials in the SPE water electrolysis. At the anode side, electrode materials catalyzing the oxygen evolution reaction (OER) require specific properties. Among the reported materials, only iridium presents high activity and is more stable. In this Minireview, an application overview of single iridium metal and its oxide catalysts—binary, ternary, and multicomponent catalysts of iridium oxides and supported composite catalysts—for the OER in SPE water electrolysis is presented. Two main strategies to improve the activity of an electrocatalyst system, namely, increasing the number of active sites and the intrinsic activity of each active site, are reviewed with detailed examples. The challenges and perspectives in this field are also discussed. SPEctacular splits: Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Water electrolysis at the anode produces O2 and four protons near the electrode surface for each oxygen molecule. Hydrogen ions are transported through the proton exchange membrane to generate H2 gas near the cathode. An overview of various electrocatalysts for the oxygen evolution reaction in SPE water electrolysis is presented.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30656828</pmid><doi>10.1002/cssc.201802873</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3125-3206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2019-04, Vol.12 (8), p.1576-1590
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2179397564
source Wiley Online Library All Journals
subjects Catalysis
Catalysts
Chemical energy
Electrocatalysts
electrochemistry
Electrode materials
Electrolysis
Electrolytes
Energy conversion
Energy storage
Hydrogen production
Iridium
Organic chemistry
Oxygen evolution reactions
Polymers
Renewable energy sources
solid polymer electrolytes
supported catalysts
Water splitting
title Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iridium%E2%80%90Based%20Catalysts%20for%20Solid%20Polymer%20Electrolyte%20Electrocatalytic%20Water%20Splitting&rft.jtitle=ChemSusChem&rft.au=Wang,%20Chao&rft.date=2019-04-23&rft.volume=12&rft.issue=8&rft.spage=1576&rft.epage=1590&rft.pages=1576-1590&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201802873&rft_dat=%3Cproquest_cross%3E2179397564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212737593&rft_id=info:pmid/30656828&rfr_iscdi=true