Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting
Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2019-04, Vol.12 (8), p.1576-1590 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1590 |
---|---|
container_issue | 8 |
container_start_page | 1576 |
container_title | ChemSusChem |
container_volume | 12 |
creator | Wang, Chao Lan, Feifei He, Zhenfeng Xie, Xiaofeng Zhao, Yuhong Hou, Hua Guo, Li Murugadoss, Vignesh Liu, Hu Shao, Qian Gao, Qiang Ding, Tao Wei, Renbo Guo, Zhanhu |
description | Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts are key materials in the SPE water electrolysis. At the anode side, electrode materials catalyzing the oxygen evolution reaction (OER) require specific properties. Among the reported materials, only iridium presents high activity and is more stable. In this Minireview, an application overview of single iridium metal and its oxide catalysts—binary, ternary, and multicomponent catalysts of iridium oxides and supported composite catalysts—for the OER in SPE water electrolysis is presented. Two main strategies to improve the activity of an electrocatalyst system, namely, increasing the number of active sites and the intrinsic activity of each active site, are reviewed with detailed examples. The challenges and perspectives in this field are also discussed.
SPEctacular splits: Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Water electrolysis at the anode produces O2 and four protons near the electrode surface for each oxygen molecule. Hydrogen ions are transported through the proton exchange membrane to generate H2 gas near the cathode. An overview of various electrocatalysts for the oxygen evolution reaction in SPE water electrolysis is presented. |
doi_str_mv | 10.1002/cssc.201802873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179397564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179397564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5163-caf20214f56189f41771e9807295eafb4f970522fa02463584975b9d46c418b43</originalsourceid><addsrcrecordid>eNqF0MtqGzEUBmARGnJxss2yDHTTjR3dL8t2SFKDoQEnJDsha6Qio_G4kobgXR8hz5gnybhOXOgmKx3Bd34OPwAXCE4QhPjS5mwnGCIJsRTkAJwgyemYcfr4aT8TdAxOc15CyKHi_AgcE8gZl1iegMdpCk3o25c_z99Ndk1Vm2LiJpdc-S5V8y6Gprrt4qZ1qbqKzpY0fIp7n-1fXoKtHkwZyHwdQylh9esMHHoTszt_e0fg_vrqrv4xnv28mdbfZmPLECdjazyGGFHPOJLKUyQEckpCgRVzxi-oVwIyjL2BmHLCJFWCLVRDuaVILigZga-73HXqfvcuF92GbF2MZuW6PmuMhCLDDt_SL__RZden1XCdxhhhQQRTZFCTnbKpyzk5r9cptCZtNIJ627nedq73nQ8Ln99i-0Xrmj1_L3kAageeQnSbD-J0PZ_X_8JfAUhWjds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212737593</pqid></control><display><type>article</type><title>Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting</title><source>Wiley Online Library All Journals</source><creator>Wang, Chao ; Lan, Feifei ; He, Zhenfeng ; Xie, Xiaofeng ; Zhao, Yuhong ; Hou, Hua ; Guo, Li ; Murugadoss, Vignesh ; Liu, Hu ; Shao, Qian ; Gao, Qiang ; Ding, Tao ; Wei, Renbo ; Guo, Zhanhu</creator><creatorcontrib>Wang, Chao ; Lan, Feifei ; He, Zhenfeng ; Xie, Xiaofeng ; Zhao, Yuhong ; Hou, Hua ; Guo, Li ; Murugadoss, Vignesh ; Liu, Hu ; Shao, Qian ; Gao, Qiang ; Ding, Tao ; Wei, Renbo ; Guo, Zhanhu</creatorcontrib><description>Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts are key materials in the SPE water electrolysis. At the anode side, electrode materials catalyzing the oxygen evolution reaction (OER) require specific properties. Among the reported materials, only iridium presents high activity and is more stable. In this Minireview, an application overview of single iridium metal and its oxide catalysts—binary, ternary, and multicomponent catalysts of iridium oxides and supported composite catalysts—for the OER in SPE water electrolysis is presented. Two main strategies to improve the activity of an electrocatalyst system, namely, increasing the number of active sites and the intrinsic activity of each active site, are reviewed with detailed examples. The challenges and perspectives in this field are also discussed.
SPEctacular splits: Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Water electrolysis at the anode produces O2 and four protons near the electrode surface for each oxygen molecule. Hydrogen ions are transported through the proton exchange membrane to generate H2 gas near the cathode. An overview of various electrocatalysts for the oxygen evolution reaction in SPE water electrolysis is presented.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201802873</identifier><identifier>PMID: 30656828</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Chemical energy ; Electrocatalysts ; electrochemistry ; Electrode materials ; Electrolysis ; Electrolytes ; Energy conversion ; Energy storage ; Hydrogen production ; Iridium ; Organic chemistry ; Oxygen evolution reactions ; Polymers ; Renewable energy sources ; solid polymer electrolytes ; supported catalysts ; Water splitting</subject><ispartof>ChemSusChem, 2019-04, Vol.12 (8), p.1576-1590</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5163-caf20214f56189f41771e9807295eafb4f970522fa02463584975b9d46c418b43</citedby><cites>FETCH-LOGICAL-c5163-caf20214f56189f41771e9807295eafb4f970522fa02463584975b9d46c418b43</cites><orcidid>0000-0003-3125-3206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201802873$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201802873$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30656828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Lan, Feifei</creatorcontrib><creatorcontrib>He, Zhenfeng</creatorcontrib><creatorcontrib>Xie, Xiaofeng</creatorcontrib><creatorcontrib>Zhao, Yuhong</creatorcontrib><creatorcontrib>Hou, Hua</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Murugadoss, Vignesh</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Wei, Renbo</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts are key materials in the SPE water electrolysis. At the anode side, electrode materials catalyzing the oxygen evolution reaction (OER) require specific properties. Among the reported materials, only iridium presents high activity and is more stable. In this Minireview, an application overview of single iridium metal and its oxide catalysts—binary, ternary, and multicomponent catalysts of iridium oxides and supported composite catalysts—for the OER in SPE water electrolysis is presented. Two main strategies to improve the activity of an electrocatalyst system, namely, increasing the number of active sites and the intrinsic activity of each active site, are reviewed with detailed examples. The challenges and perspectives in this field are also discussed.
SPEctacular splits: Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Water electrolysis at the anode produces O2 and four protons near the electrode surface for each oxygen molecule. Hydrogen ions are transported through the proton exchange membrane to generate H2 gas near the cathode. An overview of various electrocatalysts for the oxygen evolution reaction in SPE water electrolysis is presented.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical energy</subject><subject>Electrocatalysts</subject><subject>electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Hydrogen production</subject><subject>Iridium</subject><subject>Organic chemistry</subject><subject>Oxygen evolution reactions</subject><subject>Polymers</subject><subject>Renewable energy sources</subject><subject>solid polymer electrolytes</subject><subject>supported catalysts</subject><subject>Water splitting</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0MtqGzEUBmARGnJxss2yDHTTjR3dL8t2SFKDoQEnJDsha6Qio_G4kobgXR8hz5gnybhOXOgmKx3Bd34OPwAXCE4QhPjS5mwnGCIJsRTkAJwgyemYcfr4aT8TdAxOc15CyKHi_AgcE8gZl1iegMdpCk3o25c_z99Ndk1Vm2LiJpdc-S5V8y6Gprrt4qZ1qbqKzpY0fIp7n-1fXoKtHkwZyHwdQylh9esMHHoTszt_e0fg_vrqrv4xnv28mdbfZmPLECdjazyGGFHPOJLKUyQEckpCgRVzxi-oVwIyjL2BmHLCJFWCLVRDuaVILigZga-73HXqfvcuF92GbF2MZuW6PmuMhCLDDt_SL__RZden1XCdxhhhQQRTZFCTnbKpyzk5r9cptCZtNIJ627nedq73nQ8Ln99i-0Xrmj1_L3kAageeQnSbD-J0PZ_X_8JfAUhWjds</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Wang, Chao</creator><creator>Lan, Feifei</creator><creator>He, Zhenfeng</creator><creator>Xie, Xiaofeng</creator><creator>Zhao, Yuhong</creator><creator>Hou, Hua</creator><creator>Guo, Li</creator><creator>Murugadoss, Vignesh</creator><creator>Liu, Hu</creator><creator>Shao, Qian</creator><creator>Gao, Qiang</creator><creator>Ding, Tao</creator><creator>Wei, Renbo</creator><creator>Guo, Zhanhu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3125-3206</orcidid></search><sort><creationdate>20190423</creationdate><title>Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting</title><author>Wang, Chao ; Lan, Feifei ; He, Zhenfeng ; Xie, Xiaofeng ; Zhao, Yuhong ; Hou, Hua ; Guo, Li ; Murugadoss, Vignesh ; Liu, Hu ; Shao, Qian ; Gao, Qiang ; Ding, Tao ; Wei, Renbo ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5163-caf20214f56189f41771e9807295eafb4f970522fa02463584975b9d46c418b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical energy</topic><topic>Electrocatalysts</topic><topic>electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Hydrogen production</topic><topic>Iridium</topic><topic>Organic chemistry</topic><topic>Oxygen evolution reactions</topic><topic>Polymers</topic><topic>Renewable energy sources</topic><topic>solid polymer electrolytes</topic><topic>supported catalysts</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Lan, Feifei</creatorcontrib><creatorcontrib>He, Zhenfeng</creatorcontrib><creatorcontrib>Xie, Xiaofeng</creatorcontrib><creatorcontrib>Zhao, Yuhong</creatorcontrib><creatorcontrib>Hou, Hua</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Murugadoss, Vignesh</creatorcontrib><creatorcontrib>Liu, Hu</creatorcontrib><creatorcontrib>Shao, Qian</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Ding, Tao</creatorcontrib><creatorcontrib>Wei, Renbo</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chao</au><au>Lan, Feifei</au><au>He, Zhenfeng</au><au>Xie, Xiaofeng</au><au>Zhao, Yuhong</au><au>Hou, Hua</au><au>Guo, Li</au><au>Murugadoss, Vignesh</au><au>Liu, Hu</au><au>Shao, Qian</au><au>Gao, Qiang</au><au>Ding, Tao</au><au>Wei, Renbo</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2019-04-23</date><risdate>2019</risdate><volume>12</volume><issue>8</issue><spage>1576</spage><epage>1590</epage><pages>1576-1590</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Chemical energy conversion/storage through water splitting for hydrogen production has been recognized as the ideal solution to the transient nature of renewable energy sources. Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Electrocatalysts are key materials in the SPE water electrolysis. At the anode side, electrode materials catalyzing the oxygen evolution reaction (OER) require specific properties. Among the reported materials, only iridium presents high activity and is more stable. In this Minireview, an application overview of single iridium metal and its oxide catalysts—binary, ternary, and multicomponent catalysts of iridium oxides and supported composite catalysts—for the OER in SPE water electrolysis is presented. Two main strategies to improve the activity of an electrocatalyst system, namely, increasing the number of active sites and the intrinsic activity of each active site, are reviewed with detailed examples. The challenges and perspectives in this field are also discussed.
SPEctacular splits: Solid polymer electrolyte (SPE) water electrolysis is one of the most practical ways to produce pure H2. Water electrolysis at the anode produces O2 and four protons near the electrode surface for each oxygen molecule. Hydrogen ions are transported through the proton exchange membrane to generate H2 gas near the cathode. An overview of various electrocatalysts for the oxygen evolution reaction in SPE water electrolysis is presented.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30656828</pmid><doi>10.1002/cssc.201802873</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3125-3206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2019-04, Vol.12 (8), p.1576-1590 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2179397564 |
source | Wiley Online Library All Journals |
subjects | Catalysis Catalysts Chemical energy Electrocatalysts electrochemistry Electrode materials Electrolysis Electrolytes Energy conversion Energy storage Hydrogen production Iridium Organic chemistry Oxygen evolution reactions Polymers Renewable energy sources solid polymer electrolytes supported catalysts Water splitting |
title | Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iridium%E2%80%90Based%20Catalysts%20for%20Solid%20Polymer%20Electrolyte%20Electrocatalytic%20Water%20Splitting&rft.jtitle=ChemSusChem&rft.au=Wang,%20Chao&rft.date=2019-04-23&rft.volume=12&rft.issue=8&rft.spage=1576&rft.epage=1590&rft.pages=1576-1590&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201802873&rft_dat=%3Cproquest_cross%3E2179397564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212737593&rft_id=info:pmid/30656828&rfr_iscdi=true |