Time-lapse three-dimensional imaging of crack propagation in beetle cuticle
[Display omitted] Arthropod cuticle has extraordinary properties. It is very stiff and tough whilst being lightweight, yet it is made of rather ordinary constituents. This desirable combination of properties results from a hierarchical structure, but we currently have a poor understanding of how thi...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2019-03, Vol.86, p.109-116 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | |
container_start_page | 109 |
container_title | Acta biomaterialia |
container_volume | 86 |
creator | Sykes, Dan Hartwell, Rebecca Bradley, Rob S. Burnett, Timothy L. Hornberger, Benjamin Garwood, Russell J. Withers, Philip J. |
description | [Display omitted]
Arthropod cuticle has extraordinary properties. It is very stiff and tough whilst being lightweight, yet it is made of rather ordinary constituents. This desirable combination of properties results from a hierarchical structure, but we currently have a poor understanding of how this impedes damage propagation. Here we use non-destructive, time-lapse in situ tensile testing within an X-ray nanotomography (nCT) system to visualise crack progression through dry beetle elytron (wing case) cuticle in 3D. We find that its hierarchical pseudo-orthogonal laminated microstructure exploits many extrinsic toughening mechanisms, including crack deflection, fibre and laminate pull-out and crack bridging. We highlight lessons to be learned in the design of engineering structures from the toughening methods employed.
We present the first comprehensive study of the damage and toughening mechanisms within arthropod cuticle in a 3D time-lapse manner, using X-ray nanotomography during crack growth. This technique allows lamina to be isolated despite being convex, which limits 2D analysis of microstructure. We report toughening mechanisms previously unobserved in unmineralised cuticle such as crack deflection, fibre and laminate pull-out and crack bridging; and provide insights into the effects of hierarchical microstructure on crack propagation. Ultimately the benefits of the hierarchical microstructure found here can not only be used to improve biomimetic design, but also helps us to understand the remarkable success of arthropods on Earth. |
doi_str_mv | 10.1016/j.actbio.2019.01.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179391184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706119300510</els_id><sourcerecordid>2191342706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3511-75ac81eaa03c2b8111fad77ef77c93f80b6ba1c11f0bf4f66c47d48d744d9c83</originalsourceid><addsrcrecordid>eNp9kMFu2zAMQIWhw9qm-4NiMNBLL_ZIS7HkS4Ei6LphAXrJXZBpOlPq2JlkD-jfT0G6HnrYiQT1SJFPiGuEAgGrr7vC0dT4sSgB6wKwAIkfxAUabXK9rMxZyrUqcw0VnovLGHcA0mBpPolzCVUFAPpC_Nz4Pee9O0TOpl-BOW9TYYh-HFyf-b3b-mGbjV1GwdFzdgjjwW3dlJ4zP2QN89RzRvPkqecr8bFzfeTPr3EhNt8eNqvv-frp8cfqfp2TXCKm5RwZZOdAUtkYROxcqzV3WlMtOwNN1TikVIamU11VkdKtMq1Wqq3JyIW4PY1Ny_yeOU527yNx37uBxznaEnUta0SjEnrzDt2Nc0iXHakapSqTnUSpE0VhjDFwZw8hXR5eLII9urY7e3Jtj64toE2uU9uX1-Fzs-f2remf3ATcnQBOMv54DjaS54G49YFpsu3o___DX3xokPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191342706</pqid></control><display><type>article</type><title>Time-lapse three-dimensional imaging of crack propagation in beetle cuticle</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sykes, Dan ; Hartwell, Rebecca ; Bradley, Rob S. ; Burnett, Timothy L. ; Hornberger, Benjamin ; Garwood, Russell J. ; Withers, Philip J.</creator><creatorcontrib>Sykes, Dan ; Hartwell, Rebecca ; Bradley, Rob S. ; Burnett, Timothy L. ; Hornberger, Benjamin ; Garwood, Russell J. ; Withers, Philip J.</creatorcontrib><description>[Display omitted]
Arthropod cuticle has extraordinary properties. It is very stiff and tough whilst being lightweight, yet it is made of rather ordinary constituents. This desirable combination of properties results from a hierarchical structure, but we currently have a poor understanding of how this impedes damage propagation. Here we use non-destructive, time-lapse in situ tensile testing within an X-ray nanotomography (nCT) system to visualise crack progression through dry beetle elytron (wing case) cuticle in 3D. We find that its hierarchical pseudo-orthogonal laminated microstructure exploits many extrinsic toughening mechanisms, including crack deflection, fibre and laminate pull-out and crack bridging. We highlight lessons to be learned in the design of engineering structures from the toughening methods employed.
We present the first comprehensive study of the damage and toughening mechanisms within arthropod cuticle in a 3D time-lapse manner, using X-ray nanotomography during crack growth. This technique allows lamina to be isolated despite being convex, which limits 2D analysis of microstructure. We report toughening mechanisms previously unobserved in unmineralised cuticle such as crack deflection, fibre and laminate pull-out and crack bridging; and provide insights into the effects of hierarchical microstructure on crack propagation. Ultimately the benefits of the hierarchical microstructure found here can not only be used to improve biomimetic design, but also helps us to understand the remarkable success of arthropods on Earth.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2019.01.031</identifier><identifier>PMID: 30660007</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Arthropod cuticle ; Biological composites ; Coleoptera - anatomy & histology ; Crack bridging ; Crack propagation ; Cuticles ; Design engineering ; Destructive testing ; Elastic Modulus ; Imaging, Three-Dimensional ; Integumentary System - anatomy & histology ; Stress, Mechanical ; Structural hierarchy ; Time-Lapse Imaging ; Tomography, X-Ray Computed ; Toughening ; X-ray tomography</subject><ispartof>Acta biomaterialia, 2019-03, Vol.86, p.109-116</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Mar 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3511-75ac81eaa03c2b8111fad77ef77c93f80b6ba1c11f0bf4f66c47d48d744d9c83</citedby><cites>FETCH-LOGICAL-c3511-75ac81eaa03c2b8111fad77ef77c93f80b6ba1c11f0bf4f66c47d48d744d9c83</cites><orcidid>0000-0002-1946-5647 ; 0000-0002-9133-0173 ; 0000-0001-5819-0466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2019.01.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30660007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sykes, Dan</creatorcontrib><creatorcontrib>Hartwell, Rebecca</creatorcontrib><creatorcontrib>Bradley, Rob S.</creatorcontrib><creatorcontrib>Burnett, Timothy L.</creatorcontrib><creatorcontrib>Hornberger, Benjamin</creatorcontrib><creatorcontrib>Garwood, Russell J.</creatorcontrib><creatorcontrib>Withers, Philip J.</creatorcontrib><title>Time-lapse three-dimensional imaging of crack propagation in beetle cuticle</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Arthropod cuticle has extraordinary properties. It is very stiff and tough whilst being lightweight, yet it is made of rather ordinary constituents. This desirable combination of properties results from a hierarchical structure, but we currently have a poor understanding of how this impedes damage propagation. Here we use non-destructive, time-lapse in situ tensile testing within an X-ray nanotomography (nCT) system to visualise crack progression through dry beetle elytron (wing case) cuticle in 3D. We find that its hierarchical pseudo-orthogonal laminated microstructure exploits many extrinsic toughening mechanisms, including crack deflection, fibre and laminate pull-out and crack bridging. We highlight lessons to be learned in the design of engineering structures from the toughening methods employed.
We present the first comprehensive study of the damage and toughening mechanisms within arthropod cuticle in a 3D time-lapse manner, using X-ray nanotomography during crack growth. This technique allows lamina to be isolated despite being convex, which limits 2D analysis of microstructure. We report toughening mechanisms previously unobserved in unmineralised cuticle such as crack deflection, fibre and laminate pull-out and crack bridging; and provide insights into the effects of hierarchical microstructure on crack propagation. Ultimately the benefits of the hierarchical microstructure found here can not only be used to improve biomimetic design, but also helps us to understand the remarkable success of arthropods on Earth.</description><subject>Animals</subject><subject>Arthropod cuticle</subject><subject>Biological composites</subject><subject>Coleoptera - anatomy & histology</subject><subject>Crack bridging</subject><subject>Crack propagation</subject><subject>Cuticles</subject><subject>Design engineering</subject><subject>Destructive testing</subject><subject>Elastic Modulus</subject><subject>Imaging, Three-Dimensional</subject><subject>Integumentary System - anatomy & histology</subject><subject>Stress, Mechanical</subject><subject>Structural hierarchy</subject><subject>Time-Lapse Imaging</subject><subject>Tomography, X-Ray Computed</subject><subject>Toughening</subject><subject>X-ray tomography</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFu2zAMQIWhw9qm-4NiMNBLL_ZIS7HkS4Ei6LphAXrJXZBpOlPq2JlkD-jfT0G6HnrYiQT1SJFPiGuEAgGrr7vC0dT4sSgB6wKwAIkfxAUabXK9rMxZyrUqcw0VnovLGHcA0mBpPolzCVUFAPpC_Nz4Pee9O0TOpl-BOW9TYYh-HFyf-b3b-mGbjV1GwdFzdgjjwW3dlJ4zP2QN89RzRvPkqecr8bFzfeTPr3EhNt8eNqvv-frp8cfqfp2TXCKm5RwZZOdAUtkYROxcqzV3WlMtOwNN1TikVIamU11VkdKtMq1Wqq3JyIW4PY1Ny_yeOU527yNx37uBxznaEnUta0SjEnrzDt2Nc0iXHakapSqTnUSpE0VhjDFwZw8hXR5eLII9urY7e3Jtj64toE2uU9uX1-Fzs-f2remf3ATcnQBOMv54DjaS54G49YFpsu3o___DX3xokPU</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Sykes, Dan</creator><creator>Hartwell, Rebecca</creator><creator>Bradley, Rob S.</creator><creator>Burnett, Timothy L.</creator><creator>Hornberger, Benjamin</creator><creator>Garwood, Russell J.</creator><creator>Withers, Philip J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1946-5647</orcidid><orcidid>https://orcid.org/0000-0002-9133-0173</orcidid><orcidid>https://orcid.org/0000-0001-5819-0466</orcidid></search><sort><creationdate>20190301</creationdate><title>Time-lapse three-dimensional imaging of crack propagation in beetle cuticle</title><author>Sykes, Dan ; Hartwell, Rebecca ; Bradley, Rob S. ; Burnett, Timothy L. ; Hornberger, Benjamin ; Garwood, Russell J. ; Withers, Philip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3511-75ac81eaa03c2b8111fad77ef77c93f80b6ba1c11f0bf4f66c47d48d744d9c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Arthropod cuticle</topic><topic>Biological composites</topic><topic>Coleoptera - anatomy & histology</topic><topic>Crack bridging</topic><topic>Crack propagation</topic><topic>Cuticles</topic><topic>Design engineering</topic><topic>Destructive testing</topic><topic>Elastic Modulus</topic><topic>Imaging, Three-Dimensional</topic><topic>Integumentary System - anatomy & histology</topic><topic>Stress, Mechanical</topic><topic>Structural hierarchy</topic><topic>Time-Lapse Imaging</topic><topic>Tomography, X-Ray Computed</topic><topic>Toughening</topic><topic>X-ray tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sykes, Dan</creatorcontrib><creatorcontrib>Hartwell, Rebecca</creatorcontrib><creatorcontrib>Bradley, Rob S.</creatorcontrib><creatorcontrib>Burnett, Timothy L.</creatorcontrib><creatorcontrib>Hornberger, Benjamin</creatorcontrib><creatorcontrib>Garwood, Russell J.</creatorcontrib><creatorcontrib>Withers, Philip J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sykes, Dan</au><au>Hartwell, Rebecca</au><au>Bradley, Rob S.</au><au>Burnett, Timothy L.</au><au>Hornberger, Benjamin</au><au>Garwood, Russell J.</au><au>Withers, Philip J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-lapse three-dimensional imaging of crack propagation in beetle cuticle</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>86</volume><spage>109</spage><epage>116</epage><pages>109-116</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Arthropod cuticle has extraordinary properties. It is very stiff and tough whilst being lightweight, yet it is made of rather ordinary constituents. This desirable combination of properties results from a hierarchical structure, but we currently have a poor understanding of how this impedes damage propagation. Here we use non-destructive, time-lapse in situ tensile testing within an X-ray nanotomography (nCT) system to visualise crack progression through dry beetle elytron (wing case) cuticle in 3D. We find that its hierarchical pseudo-orthogonal laminated microstructure exploits many extrinsic toughening mechanisms, including crack deflection, fibre and laminate pull-out and crack bridging. We highlight lessons to be learned in the design of engineering structures from the toughening methods employed.
We present the first comprehensive study of the damage and toughening mechanisms within arthropod cuticle in a 3D time-lapse manner, using X-ray nanotomography during crack growth. This technique allows lamina to be isolated despite being convex, which limits 2D analysis of microstructure. We report toughening mechanisms previously unobserved in unmineralised cuticle such as crack deflection, fibre and laminate pull-out and crack bridging; and provide insights into the effects of hierarchical microstructure on crack propagation. Ultimately the benefits of the hierarchical microstructure found here can not only be used to improve biomimetic design, but also helps us to understand the remarkable success of arthropods on Earth.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30660007</pmid><doi>10.1016/j.actbio.2019.01.031</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1946-5647</orcidid><orcidid>https://orcid.org/0000-0002-9133-0173</orcidid><orcidid>https://orcid.org/0000-0001-5819-0466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2019-03, Vol.86, p.109-116 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179391184 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Arthropod cuticle Biological composites Coleoptera - anatomy & histology Crack bridging Crack propagation Cuticles Design engineering Destructive testing Elastic Modulus Imaging, Three-Dimensional Integumentary System - anatomy & histology Stress, Mechanical Structural hierarchy Time-Lapse Imaging Tomography, X-Ray Computed Toughening X-ray tomography |
title | Time-lapse three-dimensional imaging of crack propagation in beetle cuticle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T14%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-lapse%20three-dimensional%20imaging%20of%20crack%20propagation%20in%20beetle%20cuticle&rft.jtitle=Acta%20biomaterialia&rft.au=Sykes,%20Dan&rft.date=2019-03-01&rft.volume=86&rft.spage=109&rft.epage=116&rft.pages=109-116&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2019.01.031&rft_dat=%3Cproquest_cross%3E2191342706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191342706&rft_id=info:pmid/30660007&rft_els_id=S1742706119300510&rfr_iscdi=true |