Statistical methods for building better biomarkers of chronic kidney disease

The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2019-05, Vol.38 (11), p.1903-1917
Hauptverfasser: Pencina, Michael J., Parikh, Chirag R., Kimmel, Paul L., Cook, Nancy R., Coresh, Josef, Feldman, Harold I., Foulkes, Andrea, Gimotty, Phyllis A., Hsu, Chi‐yuan, Lemley, Kevin, Song, Peter, Wilkins, Kenneth, Gossett, Daniel R., Xie, Yining, Star, Robert A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1917
container_issue 11
container_start_page 1903
container_title Statistics in medicine
container_volume 38
creator Pencina, Michael J.
Parikh, Chirag R.
Kimmel, Paul L.
Cook, Nancy R.
Coresh, Josef
Feldman, Harold I.
Foulkes, Andrea
Gimotty, Phyllis A.
Hsu, Chi‐yuan
Lemley, Kevin
Song, Peter
Wilkins, Kenneth
Gossett, Daniel R.
Xie, Yining
Star, Robert A.
description The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease. However, some have questioned whether biomarkers currently add value to the clinical practice of nephrology. The current state of the art pertaining to statistical analyses regarding the use of such measures is critical. In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the goals of summarizing the current best practice recommendations and articulating new directions for methodological research. This report summarizes its conclusions and describes areas that need attention. Suggestions are made regarding metrics that should be commonly reported. We outline the methodological issues related to traditional metrics and considerations in prognostic modeling, including discrimination and case mix, calibration, validation, and cost‐benefit analysis. We highlight the approach to improved risk communication and the value of graphical displays. Finally, we address some “new frontiers” in prognostic biomarker research, including the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed research networks.
doi_str_mv 10.1002/sim.8091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179385987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179385987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3491-5bc67062b92c8d5427c2eaaaf4dd390531b97dabed2cd0c70f1685b0953ad0973</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIMobk7BXyAFX3zpvEmWpnkU8WMw8WH6HNIkddnaZiYtsn9v56aC4NPlwuFw70HoHMMYA5Dr6OpxDgIfoCEGwVMgLD9EQyCcpxnHbIBOYlwCYMwIP0YDCllGMaZDNJu3qnWxdVpVSW3bhTcxKX1Iis5VxjVvSWHb1va787UKKxti4stEL4JvnE5WzjR2kxgXrYr2FB2Vqor2bD9H6PX-7uX2MZ09P0xvb2apphOBU1bojENGCkF0btiEcE2sUqqcGEMFMIoLwY0qrCHagOZQ4ixnBQhGlenfoyN0tfOug3_vbGxl7aK2VaUa67soCeaC5kzkW_TyD7r0XWj66yQh2z4UKPsV6uBjDLaU6-D6dzcSg9wWln1huS3coxd7YVfU1vyA30l7IN0BH66ym39Fcj59-hJ-AjP4hDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202773035</pqid></control><display><type>article</type><title>Statistical methods for building better biomarkers of chronic kidney disease</title><source>Access via Wiley Online Library</source><creator>Pencina, Michael J. ; Parikh, Chirag R. ; Kimmel, Paul L. ; Cook, Nancy R. ; Coresh, Josef ; Feldman, Harold I. ; Foulkes, Andrea ; Gimotty, Phyllis A. ; Hsu, Chi‐yuan ; Lemley, Kevin ; Song, Peter ; Wilkins, Kenneth ; Gossett, Daniel R. ; Xie, Yining ; Star, Robert A.</creator><creatorcontrib>Pencina, Michael J. ; Parikh, Chirag R. ; Kimmel, Paul L. ; Cook, Nancy R. ; Coresh, Josef ; Feldman, Harold I. ; Foulkes, Andrea ; Gimotty, Phyllis A. ; Hsu, Chi‐yuan ; Lemley, Kevin ; Song, Peter ; Wilkins, Kenneth ; Gossett, Daniel R. ; Xie, Yining ; Star, Robert A.</creatorcontrib><description>The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease. However, some have questioned whether biomarkers currently add value to the clinical practice of nephrology. The current state of the art pertaining to statistical analyses regarding the use of such measures is critical. In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the goals of summarizing the current best practice recommendations and articulating new directions for methodological research. This report summarizes its conclusions and describes areas that need attention. Suggestions are made regarding metrics that should be commonly reported. We outline the methodological issues related to traditional metrics and considerations in prognostic modeling, including discrimination and case mix, calibration, validation, and cost‐benefit analysis. We highlight the approach to improved risk communication and the value of graphical displays. Finally, we address some “new frontiers” in prognostic biomarker research, including the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed research networks.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8091</identifier><identifier>PMID: 30663113</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biomarkers ; calibration ; Clinical medicine ; cost‐benefit ; discrimination ; Kidney diseases ; Medical statistics ; risk communication ; risk model ; Statistical methods ; validation</subject><ispartof>Statistics in medicine, 2019-05, Vol.38 (11), p.1903-1917</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3491-5bc67062b92c8d5427c2eaaaf4dd390531b97dabed2cd0c70f1685b0953ad0973</citedby><cites>FETCH-LOGICAL-c3491-5bc67062b92c8d5427c2eaaaf4dd390531b97dabed2cd0c70f1685b0953ad0973</cites><orcidid>0000-0002-1968-2641 ; 0000-0002-9520-0501 ; 0000-0002-9705-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30663113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pencina, Michael J.</creatorcontrib><creatorcontrib>Parikh, Chirag R.</creatorcontrib><creatorcontrib>Kimmel, Paul L.</creatorcontrib><creatorcontrib>Cook, Nancy R.</creatorcontrib><creatorcontrib>Coresh, Josef</creatorcontrib><creatorcontrib>Feldman, Harold I.</creatorcontrib><creatorcontrib>Foulkes, Andrea</creatorcontrib><creatorcontrib>Gimotty, Phyllis A.</creatorcontrib><creatorcontrib>Hsu, Chi‐yuan</creatorcontrib><creatorcontrib>Lemley, Kevin</creatorcontrib><creatorcontrib>Song, Peter</creatorcontrib><creatorcontrib>Wilkins, Kenneth</creatorcontrib><creatorcontrib>Gossett, Daniel R.</creatorcontrib><creatorcontrib>Xie, Yining</creatorcontrib><creatorcontrib>Star, Robert A.</creatorcontrib><title>Statistical methods for building better biomarkers of chronic kidney disease</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease. However, some have questioned whether biomarkers currently add value to the clinical practice of nephrology. The current state of the art pertaining to statistical analyses regarding the use of such measures is critical. In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the goals of summarizing the current best practice recommendations and articulating new directions for methodological research. This report summarizes its conclusions and describes areas that need attention. Suggestions are made regarding metrics that should be commonly reported. We outline the methodological issues related to traditional metrics and considerations in prognostic modeling, including discrimination and case mix, calibration, validation, and cost‐benefit analysis. We highlight the approach to improved risk communication and the value of graphical displays. Finally, we address some “new frontiers” in prognostic biomarker research, including the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed research networks.</description><subject>Biomarkers</subject><subject>calibration</subject><subject>Clinical medicine</subject><subject>cost‐benefit</subject><subject>discrimination</subject><subject>Kidney diseases</subject><subject>Medical statistics</subject><subject>risk communication</subject><subject>risk model</subject><subject>Statistical methods</subject><subject>validation</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUQIMobk7BXyAFX3zpvEmWpnkU8WMw8WH6HNIkddnaZiYtsn9v56aC4NPlwuFw70HoHMMYA5Dr6OpxDgIfoCEGwVMgLD9EQyCcpxnHbIBOYlwCYMwIP0YDCllGMaZDNJu3qnWxdVpVSW3bhTcxKX1Iis5VxjVvSWHb1va787UKKxti4stEL4JvnE5WzjR2kxgXrYr2FB2Vqor2bD9H6PX-7uX2MZ09P0xvb2apphOBU1bojENGCkF0btiEcE2sUqqcGEMFMIoLwY0qrCHagOZQ4ixnBQhGlenfoyN0tfOug3_vbGxl7aK2VaUa67soCeaC5kzkW_TyD7r0XWj66yQh2z4UKPsV6uBjDLaU6-D6dzcSg9wWln1huS3coxd7YVfU1vyA30l7IN0BH66ym39Fcj59-hJ-AjP4hDM</recordid><startdate>20190520</startdate><enddate>20190520</enddate><creator>Pencina, Michael J.</creator><creator>Parikh, Chirag R.</creator><creator>Kimmel, Paul L.</creator><creator>Cook, Nancy R.</creator><creator>Coresh, Josef</creator><creator>Feldman, Harold I.</creator><creator>Foulkes, Andrea</creator><creator>Gimotty, Phyllis A.</creator><creator>Hsu, Chi‐yuan</creator><creator>Lemley, Kevin</creator><creator>Song, Peter</creator><creator>Wilkins, Kenneth</creator><creator>Gossett, Daniel R.</creator><creator>Xie, Yining</creator><creator>Star, Robert A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1968-2641</orcidid><orcidid>https://orcid.org/0000-0002-9520-0501</orcidid><orcidid>https://orcid.org/0000-0002-9705-0842</orcidid></search><sort><creationdate>20190520</creationdate><title>Statistical methods for building better biomarkers of chronic kidney disease</title><author>Pencina, Michael J. ; Parikh, Chirag R. ; Kimmel, Paul L. ; Cook, Nancy R. ; Coresh, Josef ; Feldman, Harold I. ; Foulkes, Andrea ; Gimotty, Phyllis A. ; Hsu, Chi‐yuan ; Lemley, Kevin ; Song, Peter ; Wilkins, Kenneth ; Gossett, Daniel R. ; Xie, Yining ; Star, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3491-5bc67062b92c8d5427c2eaaaf4dd390531b97dabed2cd0c70f1685b0953ad0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomarkers</topic><topic>calibration</topic><topic>Clinical medicine</topic><topic>cost‐benefit</topic><topic>discrimination</topic><topic>Kidney diseases</topic><topic>Medical statistics</topic><topic>risk communication</topic><topic>risk model</topic><topic>Statistical methods</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pencina, Michael J.</creatorcontrib><creatorcontrib>Parikh, Chirag R.</creatorcontrib><creatorcontrib>Kimmel, Paul L.</creatorcontrib><creatorcontrib>Cook, Nancy R.</creatorcontrib><creatorcontrib>Coresh, Josef</creatorcontrib><creatorcontrib>Feldman, Harold I.</creatorcontrib><creatorcontrib>Foulkes, Andrea</creatorcontrib><creatorcontrib>Gimotty, Phyllis A.</creatorcontrib><creatorcontrib>Hsu, Chi‐yuan</creatorcontrib><creatorcontrib>Lemley, Kevin</creatorcontrib><creatorcontrib>Song, Peter</creatorcontrib><creatorcontrib>Wilkins, Kenneth</creatorcontrib><creatorcontrib>Gossett, Daniel R.</creatorcontrib><creatorcontrib>Xie, Yining</creatorcontrib><creatorcontrib>Star, Robert A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pencina, Michael J.</au><au>Parikh, Chirag R.</au><au>Kimmel, Paul L.</au><au>Cook, Nancy R.</au><au>Coresh, Josef</au><au>Feldman, Harold I.</au><au>Foulkes, Andrea</au><au>Gimotty, Phyllis A.</au><au>Hsu, Chi‐yuan</au><au>Lemley, Kevin</au><au>Song, Peter</au><au>Wilkins, Kenneth</au><au>Gossett, Daniel R.</au><au>Xie, Yining</au><au>Star, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical methods for building better biomarkers of chronic kidney disease</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2019-05-20</date><risdate>2019</risdate><volume>38</volume><issue>11</issue><spage>1903</spage><epage>1917</epage><pages>1903-1917</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease. However, some have questioned whether biomarkers currently add value to the clinical practice of nephrology. The current state of the art pertaining to statistical analyses regarding the use of such measures is critical. In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the goals of summarizing the current best practice recommendations and articulating new directions for methodological research. This report summarizes its conclusions and describes areas that need attention. Suggestions are made regarding metrics that should be commonly reported. We outline the methodological issues related to traditional metrics and considerations in prognostic modeling, including discrimination and case mix, calibration, validation, and cost‐benefit analysis. We highlight the approach to improved risk communication and the value of graphical displays. Finally, we address some “new frontiers” in prognostic biomarker research, including the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed research networks.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30663113</pmid><doi>10.1002/sim.8091</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1968-2641</orcidid><orcidid>https://orcid.org/0000-0002-9520-0501</orcidid><orcidid>https://orcid.org/0000-0002-9705-0842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2019-05, Vol.38 (11), p.1903-1917
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2179385987
source Access via Wiley Online Library
subjects Biomarkers
calibration
Clinical medicine
cost‐benefit
discrimination
Kidney diseases
Medical statistics
risk communication
risk model
Statistical methods
validation
title Statistical methods for building better biomarkers of chronic kidney disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20methods%20for%20building%20better%20biomarkers%20of%20chronic%20kidney%20disease&rft.jtitle=Statistics%20in%20medicine&rft.au=Pencina,%20Michael%20J.&rft.date=2019-05-20&rft.volume=38&rft.issue=11&rft.spage=1903&rft.epage=1917&rft.pages=1903-1917&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8091&rft_dat=%3Cproquest_cross%3E2179385987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202773035&rft_id=info:pmid/30663113&rfr_iscdi=true