Statistical methods for building better biomarkers of chronic kidney disease
The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in t...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2019-05, Vol.38 (11), p.1903-1917 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1917 |
---|---|
container_issue | 11 |
container_start_page | 1903 |
container_title | Statistics in medicine |
container_volume | 38 |
creator | Pencina, Michael J. Parikh, Chirag R. Kimmel, Paul L. Cook, Nancy R. Coresh, Josef Feldman, Harold I. Foulkes, Andrea Gimotty, Phyllis A. Hsu, Chi‐yuan Lemley, Kevin Song, Peter Wilkins, Kenneth Gossett, Daniel R. Xie, Yining Star, Robert A. |
description | The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease. However, some have questioned whether biomarkers currently add value to the clinical practice of nephrology. The current state of the art pertaining to statistical analyses regarding the use of such measures is critical.
In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the goals of summarizing the current best practice recommendations and articulating new directions for methodological research. This report summarizes its conclusions and describes areas that need attention. Suggestions are made regarding metrics that should be commonly reported. We outline the methodological issues related to traditional metrics and considerations in prognostic modeling, including discrimination and case mix, calibration, validation, and cost‐benefit analysis. We highlight the approach to improved risk communication and the value of graphical displays. Finally, we address some “new frontiers” in prognostic biomarker research, including the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed research networks. |
doi_str_mv | 10.1002/sim.8091 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179385987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179385987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3491-5bc67062b92c8d5427c2eaaaf4dd390531b97dabed2cd0c70f1685b0953ad0973</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIMobk7BXyAFX3zpvEmWpnkU8WMw8WH6HNIkddnaZiYtsn9v56aC4NPlwuFw70HoHMMYA5Dr6OpxDgIfoCEGwVMgLD9EQyCcpxnHbIBOYlwCYMwIP0YDCllGMaZDNJu3qnWxdVpVSW3bhTcxKX1Iis5VxjVvSWHb1va787UKKxti4stEL4JvnE5WzjR2kxgXrYr2FB2Vqor2bD9H6PX-7uX2MZ09P0xvb2apphOBU1bojENGCkF0btiEcE2sUqqcGEMFMIoLwY0qrCHagOZQ4ixnBQhGlenfoyN0tfOug3_vbGxl7aK2VaUa67soCeaC5kzkW_TyD7r0XWj66yQh2z4UKPsV6uBjDLaU6-D6dzcSg9wWln1huS3coxd7YVfU1vyA30l7IN0BH66ym39Fcj59-hJ-AjP4hDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202773035</pqid></control><display><type>article</type><title>Statistical methods for building better biomarkers of chronic kidney disease</title><source>Access via Wiley Online Library</source><creator>Pencina, Michael J. ; Parikh, Chirag R. ; Kimmel, Paul L. ; Cook, Nancy R. ; Coresh, Josef ; Feldman, Harold I. ; Foulkes, Andrea ; Gimotty, Phyllis A. ; Hsu, Chi‐yuan ; Lemley, Kevin ; Song, Peter ; Wilkins, Kenneth ; Gossett, Daniel R. ; Xie, Yining ; Star, Robert A.</creator><creatorcontrib>Pencina, Michael J. ; Parikh, Chirag R. ; Kimmel, Paul L. ; Cook, Nancy R. ; Coresh, Josef ; Feldman, Harold I. ; Foulkes, Andrea ; Gimotty, Phyllis A. ; Hsu, Chi‐yuan ; Lemley, Kevin ; Song, Peter ; Wilkins, Kenneth ; Gossett, Daniel R. ; Xie, Yining ; Star, Robert A.</creatorcontrib><description>The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease. However, some have questioned whether biomarkers currently add value to the clinical practice of nephrology. The current state of the art pertaining to statistical analyses regarding the use of such measures is critical.
In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the goals of summarizing the current best practice recommendations and articulating new directions for methodological research. This report summarizes its conclusions and describes areas that need attention. Suggestions are made regarding metrics that should be commonly reported. We outline the methodological issues related to traditional metrics and considerations in prognostic modeling, including discrimination and case mix, calibration, validation, and cost‐benefit analysis. We highlight the approach to improved risk communication and the value of graphical displays. Finally, we address some “new frontiers” in prognostic biomarker research, including the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed research networks.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8091</identifier><identifier>PMID: 30663113</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Biomarkers ; calibration ; Clinical medicine ; cost‐benefit ; discrimination ; Kidney diseases ; Medical statistics ; risk communication ; risk model ; Statistical methods ; validation</subject><ispartof>Statistics in medicine, 2019-05, Vol.38 (11), p.1903-1917</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3491-5bc67062b92c8d5427c2eaaaf4dd390531b97dabed2cd0c70f1685b0953ad0973</citedby><cites>FETCH-LOGICAL-c3491-5bc67062b92c8d5427c2eaaaf4dd390531b97dabed2cd0c70f1685b0953ad0973</cites><orcidid>0000-0002-1968-2641 ; 0000-0002-9520-0501 ; 0000-0002-9705-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30663113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pencina, Michael J.</creatorcontrib><creatorcontrib>Parikh, Chirag R.</creatorcontrib><creatorcontrib>Kimmel, Paul L.</creatorcontrib><creatorcontrib>Cook, Nancy R.</creatorcontrib><creatorcontrib>Coresh, Josef</creatorcontrib><creatorcontrib>Feldman, Harold I.</creatorcontrib><creatorcontrib>Foulkes, Andrea</creatorcontrib><creatorcontrib>Gimotty, Phyllis A.</creatorcontrib><creatorcontrib>Hsu, Chi‐yuan</creatorcontrib><creatorcontrib>Lemley, Kevin</creatorcontrib><creatorcontrib>Song, Peter</creatorcontrib><creatorcontrib>Wilkins, Kenneth</creatorcontrib><creatorcontrib>Gossett, Daniel R.</creatorcontrib><creatorcontrib>Xie, Yining</creatorcontrib><creatorcontrib>Star, Robert A.</creatorcontrib><title>Statistical methods for building better biomarkers of chronic kidney disease</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease. However, some have questioned whether biomarkers currently add value to the clinical practice of nephrology. The current state of the art pertaining to statistical analyses regarding the use of such measures is critical.
In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the goals of summarizing the current best practice recommendations and articulating new directions for methodological research. This report summarizes its conclusions and describes areas that need attention. Suggestions are made regarding metrics that should be commonly reported. We outline the methodological issues related to traditional metrics and considerations in prognostic modeling, including discrimination and case mix, calibration, validation, and cost‐benefit analysis. We highlight the approach to improved risk communication and the value of graphical displays. Finally, we address some “new frontiers” in prognostic biomarker research, including the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed research networks.</description><subject>Biomarkers</subject><subject>calibration</subject><subject>Clinical medicine</subject><subject>cost‐benefit</subject><subject>discrimination</subject><subject>Kidney diseases</subject><subject>Medical statistics</subject><subject>risk communication</subject><subject>risk model</subject><subject>Statistical methods</subject><subject>validation</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUQIMobk7BXyAFX3zpvEmWpnkU8WMw8WH6HNIkddnaZiYtsn9v56aC4NPlwuFw70HoHMMYA5Dr6OpxDgIfoCEGwVMgLD9EQyCcpxnHbIBOYlwCYMwIP0YDCllGMaZDNJu3qnWxdVpVSW3bhTcxKX1Iis5VxjVvSWHb1va787UKKxti4stEL4JvnE5WzjR2kxgXrYr2FB2Vqor2bD9H6PX-7uX2MZ09P0xvb2apphOBU1bojENGCkF0btiEcE2sUqqcGEMFMIoLwY0qrCHagOZQ4ixnBQhGlenfoyN0tfOug3_vbGxl7aK2VaUa67soCeaC5kzkW_TyD7r0XWj66yQh2z4UKPsV6uBjDLaU6-D6dzcSg9wWln1huS3coxd7YVfU1vyA30l7IN0BH66ym39Fcj59-hJ-AjP4hDM</recordid><startdate>20190520</startdate><enddate>20190520</enddate><creator>Pencina, Michael J.</creator><creator>Parikh, Chirag R.</creator><creator>Kimmel, Paul L.</creator><creator>Cook, Nancy R.</creator><creator>Coresh, Josef</creator><creator>Feldman, Harold I.</creator><creator>Foulkes, Andrea</creator><creator>Gimotty, Phyllis A.</creator><creator>Hsu, Chi‐yuan</creator><creator>Lemley, Kevin</creator><creator>Song, Peter</creator><creator>Wilkins, Kenneth</creator><creator>Gossett, Daniel R.</creator><creator>Xie, Yining</creator><creator>Star, Robert A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1968-2641</orcidid><orcidid>https://orcid.org/0000-0002-9520-0501</orcidid><orcidid>https://orcid.org/0000-0002-9705-0842</orcidid></search><sort><creationdate>20190520</creationdate><title>Statistical methods for building better biomarkers of chronic kidney disease</title><author>Pencina, Michael J. ; Parikh, Chirag R. ; Kimmel, Paul L. ; Cook, Nancy R. ; Coresh, Josef ; Feldman, Harold I. ; Foulkes, Andrea ; Gimotty, Phyllis A. ; Hsu, Chi‐yuan ; Lemley, Kevin ; Song, Peter ; Wilkins, Kenneth ; Gossett, Daniel R. ; Xie, Yining ; Star, Robert A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3491-5bc67062b92c8d5427c2eaaaf4dd390531b97dabed2cd0c70f1685b0953ad0973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomarkers</topic><topic>calibration</topic><topic>Clinical medicine</topic><topic>cost‐benefit</topic><topic>discrimination</topic><topic>Kidney diseases</topic><topic>Medical statistics</topic><topic>risk communication</topic><topic>risk model</topic><topic>Statistical methods</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pencina, Michael J.</creatorcontrib><creatorcontrib>Parikh, Chirag R.</creatorcontrib><creatorcontrib>Kimmel, Paul L.</creatorcontrib><creatorcontrib>Cook, Nancy R.</creatorcontrib><creatorcontrib>Coresh, Josef</creatorcontrib><creatorcontrib>Feldman, Harold I.</creatorcontrib><creatorcontrib>Foulkes, Andrea</creatorcontrib><creatorcontrib>Gimotty, Phyllis A.</creatorcontrib><creatorcontrib>Hsu, Chi‐yuan</creatorcontrib><creatorcontrib>Lemley, Kevin</creatorcontrib><creatorcontrib>Song, Peter</creatorcontrib><creatorcontrib>Wilkins, Kenneth</creatorcontrib><creatorcontrib>Gossett, Daniel R.</creatorcontrib><creatorcontrib>Xie, Yining</creatorcontrib><creatorcontrib>Star, Robert A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pencina, Michael J.</au><au>Parikh, Chirag R.</au><au>Kimmel, Paul L.</au><au>Cook, Nancy R.</au><au>Coresh, Josef</au><au>Feldman, Harold I.</au><au>Foulkes, Andrea</au><au>Gimotty, Phyllis A.</au><au>Hsu, Chi‐yuan</au><au>Lemley, Kevin</au><au>Song, Peter</au><au>Wilkins, Kenneth</au><au>Gossett, Daniel R.</au><au>Xie, Yining</au><au>Star, Robert A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical methods for building better biomarkers of chronic kidney disease</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2019-05-20</date><risdate>2019</risdate><volume>38</volume><issue>11</issue><spage>1903</spage><epage>1917</epage><pages>1903-1917</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>The last two decades have witnessed an explosion in research focused on the development and assessment of novel biomarkers for improved prognosis of diseases. As a result, best practice standards guiding biomarker research have undergone extensive development. Currently, there is great interest in the promise of biomarkers to enhance research efforts and clinical practice in the setting of chronic kidney disease, acute kidney injury, and glomerular disease. However, some have questioned whether biomarkers currently add value to the clinical practice of nephrology. The current state of the art pertaining to statistical analyses regarding the use of such measures is critical.
In December 2014, the National Institute of Diabetes and Digestive and Kidney Diseases convened a meeting, “Toward Building Better Biomarker Statistical Methodology,” with the goals of summarizing the current best practice recommendations and articulating new directions for methodological research. This report summarizes its conclusions and describes areas that need attention. Suggestions are made regarding metrics that should be commonly reported. We outline the methodological issues related to traditional metrics and considerations in prognostic modeling, including discrimination and case mix, calibration, validation, and cost‐benefit analysis. We highlight the approach to improved risk communication and the value of graphical displays. Finally, we address some “new frontiers” in prognostic biomarker research, including the competing risk framework, the use of longitudinal biomarkers, and analyses in distributed research networks.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30663113</pmid><doi>10.1002/sim.8091</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1968-2641</orcidid><orcidid>https://orcid.org/0000-0002-9520-0501</orcidid><orcidid>https://orcid.org/0000-0002-9705-0842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2019-05, Vol.38 (11), p.1903-1917 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179385987 |
source | Access via Wiley Online Library |
subjects | Biomarkers calibration Clinical medicine cost‐benefit discrimination Kidney diseases Medical statistics risk communication risk model Statistical methods validation |
title | Statistical methods for building better biomarkers of chronic kidney disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20methods%20for%20building%20better%20biomarkers%20of%20chronic%20kidney%20disease&rft.jtitle=Statistics%20in%20medicine&rft.au=Pencina,%20Michael%20J.&rft.date=2019-05-20&rft.volume=38&rft.issue=11&rft.spage=1903&rft.epage=1917&rft.pages=1903-1917&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8091&rft_dat=%3Cproquest_cross%3E2179385987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202773035&rft_id=info:pmid/30663113&rfr_iscdi=true |