Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia
Respiratory infections are a leading cause of morbidity and mortality globally. This is partially due to a lack of effective vaccines and a clear understanding of how vaccination route and formulation influence protective immunity in mucosal tissues such as the lung. Pseudomonas aeruginosa is an opp...
Gespeichert in:
Veröffentlicht in: | Vaccine 2019-02, Vol.37 (6), p.808-816 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 816 |
---|---|
container_issue | 6 |
container_start_page | 808 |
container_title | Vaccine |
container_volume | 37 |
creator | Baker, Sarah M. Pociask, Derek Clements, John D. McLachlan, James B. Morici, Lisa A. |
description | Respiratory infections are a leading cause of morbidity and mortality globally. This is partially due to a lack of effective vaccines and a clear understanding of how vaccination route and formulation influence protective immunity in mucosal tissues such as the lung. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing acute pulmonary infections and is a leading cause of hospital-acquired and ventilator-associated pneumonia. With multidrug-resistant P. aeruginosa infections on the rise, the need for a vaccine against this pathogen is critical. Growing evidence suggests that a successful P. aeruginosa vaccine may require mucosal antibody and Th1- and Th17-type CD4+ T cells to prevent pulmonary infection. Intradermal immunization with adjuvants, such as the bacterial ADP-Ribosylating Enterotoxin Adjuvant (BARE) double mutant of E. coli heat-labile toxin (dmLT), can direct protective immune responses to mucosal tissues, including the lungs. We reasoned that intradermal immunization with P. aeruginosa outer membrane proteins (OMPs) adjuvanted with dmLT could drive neutralizing antibodies and migration of CD4+ T cells to the lungs and protect against P. aeruginosa pneumonia in a murine model. Here we show that mice immunized with OMPs and dmLT had significantly more antigen-specific IgG and Th1- and Th17-type CD4+ memory T cells in the pulmonary environment compared to control groups of mice. Furthermore, OMPs and dmLT immunized mice were significantly protected against an otherwise lethal lung infection. Protection was associated with early IFN-γ and IL-17 production in the lungs of immunized mice. These results indicate that intradermal immunization with dmLT can drive protective immunity to the lung mucosa and may be a viable vaccination strategy for a multitude of respiratory pathogens. |
doi_str_mv | 10.1016/j.vaccine.2018.12.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179372844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X1930009X</els_id><sourcerecordid>2179372844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-113c304ddee3c384c5ce85f80ce26aafd4fc2323d0973b99746089d0f08da4cf3</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EoqHwE0CW2LCZwY952CtUtRQqVaILkNhZjn0neJSxgx8p_TP8VhwlZcGGla-l75x7dQ5CrylpKaHD-7nda2Och5YRKlrKWtLzJ2hFxcgb1lPxFK0IG7qmo-T7GXqR0kxIRah8js44GbgYpVyh3zc-R20hLnqLj446u-Dxvcs_sMZ3CYoNS_A6YQ2xbJwPSZ9IwNrOZa99BvsoWEquf7zWJkN01fTi6q6Jbh3Sw7Y6-w2GiseQwy_n8a4OYHL13mjnU8balAx456HUnU6_RM8mvU3w6vSeo2_XH79efm5uv3y6uby4bQyXPDeUcsNJZy1AHURnegOinwQxwAatJ9tNhnHGLZEjX0s5dgMR0pKJCKs7M_Fz9O7oWw_6WSBltbhkYLvVHkJJitFR8pGJrqvo23_QOZTo63UHikjCOesr1R8pE0NKESa1i27R8UFRog4FqlmdQlSHAhVlqrZTdW9O7mW9gP2remysAh-OANQ49g6iSsaBN2BdrEkqG9x_VvwBcVizSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170903325</pqid></control><display><type>article</type><title>Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Baker, Sarah M. ; Pociask, Derek ; Clements, John D. ; McLachlan, James B. ; Morici, Lisa A.</creator><creatorcontrib>Baker, Sarah M. ; Pociask, Derek ; Clements, John D. ; McLachlan, James B. ; Morici, Lisa A.</creatorcontrib><description>Respiratory infections are a leading cause of morbidity and mortality globally. This is partially due to a lack of effective vaccines and a clear understanding of how vaccination route and formulation influence protective immunity in mucosal tissues such as the lung. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing acute pulmonary infections and is a leading cause of hospital-acquired and ventilator-associated pneumonia. With multidrug-resistant P. aeruginosa infections on the rise, the need for a vaccine against this pathogen is critical. Growing evidence suggests that a successful P. aeruginosa vaccine may require mucosal antibody and Th1- and Th17-type CD4+ T cells to prevent pulmonary infection. Intradermal immunization with adjuvants, such as the bacterial ADP-Ribosylating Enterotoxin Adjuvant (BARE) double mutant of E. coli heat-labile toxin (dmLT), can direct protective immune responses to mucosal tissues, including the lungs. We reasoned that intradermal immunization with P. aeruginosa outer membrane proteins (OMPs) adjuvanted with dmLT could drive neutralizing antibodies and migration of CD4+ T cells to the lungs and protect against P. aeruginosa pneumonia in a murine model. Here we show that mice immunized with OMPs and dmLT had significantly more antigen-specific IgG and Th1- and Th17-type CD4+ memory T cells in the pulmonary environment compared to control groups of mice. Furthermore, OMPs and dmLT immunized mice were significantly protected against an otherwise lethal lung infection. Protection was associated with early IFN-γ and IL-17 production in the lungs of immunized mice. These results indicate that intradermal immunization with dmLT can drive protective immunity to the lung mucosa and may be a viable vaccination strategy for a multitude of respiratory pathogens.</description><identifier>ISSN: 0264-410X</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2018.12.053</identifier><identifier>PMID: 30638799</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Acute Disease ; Adenosine diphosphate ; Adjuvants ; Adjuvants, Immunologic - administration & dosage ; Animal models ; Animals ; Antibodies ; Antibodies, Bacterial - blood ; Antibodies, Neutralizing - blood ; Antigens ; Bacteria ; Bacterial infections ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - immunology ; Bacterial Toxins - genetics ; Bacterial Toxins - immunology ; CD4 antigen ; CD4-Positive T-Lymphocytes - immunology ; Cell adhesion & migration ; Cell migration ; Dendritic cells ; Disease Models, Animal ; dmLT ; Drug resistance ; E coli ; Enterotoxins - genetics ; Enterotoxins - immunology ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - immunology ; Female ; Helper cells ; Immunity ; Immunization ; Immunoglobulin G ; Immunoglobulin G - blood ; Immunoglobulins ; Immunologic Memory ; Immunological memory ; Infections ; Injections, Intradermal ; Interferon-gamma - immunology ; Interleukin 17 ; Interleukin-17 - immunology ; Intradermal ; Laboratory animals ; Lung ; Lung - immunology ; Lung - microbiology ; Lungs ; Lymphatic system ; Lymphocytes ; Lymphocytes T ; Membrane proteins ; Memory cells ; Mice ; Mice, Inbred C57BL ; Morbidity ; Mucosal immunity ; Multidrug resistance ; Mutation ; Opportunist infection ; Outer membrane proteins ; Pathogens ; Pneumonia ; Pneumonia, Bacterial - prevention & control ; Proteins ; Pseudomonas aeruginosa ; Pseudomonas Infections - prevention & control ; Pseudomonas Vaccines - administration & dosage ; Pseudomonas Vaccines - immunology ; Respiratory diseases ; Toxins ; Tuberculosis ; Vaccination - methods ; Vaccine ; Vaccines ; Ventilator-associated pneumonia ; γ-Interferon</subject><ispartof>Vaccine, 2019-02, Vol.37 (6), p.808-816</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 4, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-113c304ddee3c384c5ce85f80ce26aafd4fc2323d0973b99746089d0f08da4cf3</citedby><cites>FETCH-LOGICAL-c393t-113c304ddee3c384c5ce85f80ce26aafd4fc2323d0973b99746089d0f08da4cf3</cites><orcidid>0000-0002-0177-8135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2170903325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30638799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, Sarah M.</creatorcontrib><creatorcontrib>Pociask, Derek</creatorcontrib><creatorcontrib>Clements, John D.</creatorcontrib><creatorcontrib>McLachlan, James B.</creatorcontrib><creatorcontrib>Morici, Lisa A.</creatorcontrib><title>Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia</title><title>Vaccine</title><addtitle>Vaccine</addtitle><description>Respiratory infections are a leading cause of morbidity and mortality globally. This is partially due to a lack of effective vaccines and a clear understanding of how vaccination route and formulation influence protective immunity in mucosal tissues such as the lung. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing acute pulmonary infections and is a leading cause of hospital-acquired and ventilator-associated pneumonia. With multidrug-resistant P. aeruginosa infections on the rise, the need for a vaccine against this pathogen is critical. Growing evidence suggests that a successful P. aeruginosa vaccine may require mucosal antibody and Th1- and Th17-type CD4+ T cells to prevent pulmonary infection. Intradermal immunization with adjuvants, such as the bacterial ADP-Ribosylating Enterotoxin Adjuvant (BARE) double mutant of E. coli heat-labile toxin (dmLT), can direct protective immune responses to mucosal tissues, including the lungs. We reasoned that intradermal immunization with P. aeruginosa outer membrane proteins (OMPs) adjuvanted with dmLT could drive neutralizing antibodies and migration of CD4+ T cells to the lungs and protect against P. aeruginosa pneumonia in a murine model. Here we show that mice immunized with OMPs and dmLT had significantly more antigen-specific IgG and Th1- and Th17-type CD4+ memory T cells in the pulmonary environment compared to control groups of mice. Furthermore, OMPs and dmLT immunized mice were significantly protected against an otherwise lethal lung infection. Protection was associated with early IFN-γ and IL-17 production in the lungs of immunized mice. These results indicate that intradermal immunization with dmLT can drive protective immunity to the lung mucosa and may be a viable vaccination strategy for a multitude of respiratory pathogens.</description><subject>Acute Disease</subject><subject>Adenosine diphosphate</subject><subject>Adjuvants</subject><subject>Adjuvants, Immunologic - administration & dosage</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antibodies, Bacterial - blood</subject><subject>Antibodies, Neutralizing - blood</subject><subject>Antigens</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - immunology</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - immunology</subject><subject>CD4 antigen</subject><subject>CD4-Positive T-Lymphocytes - immunology</subject><subject>Cell adhesion & migration</subject><subject>Cell migration</subject><subject>Dendritic cells</subject><subject>Disease Models, Animal</subject><subject>dmLT</subject><subject>Drug resistance</subject><subject>E coli</subject><subject>Enterotoxins - genetics</subject><subject>Enterotoxins - immunology</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - immunology</subject><subject>Female</subject><subject>Helper cells</subject><subject>Immunity</subject><subject>Immunization</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulin G - blood</subject><subject>Immunoglobulins</subject><subject>Immunologic Memory</subject><subject>Immunological memory</subject><subject>Infections</subject><subject>Injections, Intradermal</subject><subject>Interferon-gamma - immunology</subject><subject>Interleukin 17</subject><subject>Interleukin-17 - immunology</subject><subject>Intradermal</subject><subject>Laboratory animals</subject><subject>Lung</subject><subject>Lung - immunology</subject><subject>Lung - microbiology</subject><subject>Lungs</subject><subject>Lymphatic system</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Membrane proteins</subject><subject>Memory cells</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Morbidity</subject><subject>Mucosal immunity</subject><subject>Multidrug resistance</subject><subject>Mutation</subject><subject>Opportunist infection</subject><subject>Outer membrane proteins</subject><subject>Pathogens</subject><subject>Pneumonia</subject><subject>Pneumonia, Bacterial - prevention & control</subject><subject>Proteins</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas Infections - prevention & control</subject><subject>Pseudomonas Vaccines - administration & dosage</subject><subject>Pseudomonas Vaccines - immunology</subject><subject>Respiratory diseases</subject><subject>Toxins</subject><subject>Tuberculosis</subject><subject>Vaccination - methods</subject><subject>Vaccine</subject><subject>Vaccines</subject><subject>Ventilator-associated pneumonia</subject><subject>γ-Interferon</subject><issn>0264-410X</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtvEzEUhS0EoqHwE0CW2LCZwY952CtUtRQqVaILkNhZjn0neJSxgx8p_TP8VhwlZcGGla-l75x7dQ5CrylpKaHD-7nda2Och5YRKlrKWtLzJ2hFxcgb1lPxFK0IG7qmo-T7GXqR0kxIRah8js44GbgYpVyh3zc-R20hLnqLj446u-Dxvcs_sMZ3CYoNS_A6YQ2xbJwPSZ9IwNrOZa99BvsoWEquf7zWJkN01fTi6q6Jbh3Sw7Y6-w2GiseQwy_n8a4OYHL13mjnU8balAx456HUnU6_RM8mvU3w6vSeo2_XH79efm5uv3y6uby4bQyXPDeUcsNJZy1AHURnegOinwQxwAatJ9tNhnHGLZEjX0s5dgMR0pKJCKs7M_Fz9O7oWw_6WSBltbhkYLvVHkJJitFR8pGJrqvo23_QOZTo63UHikjCOesr1R8pE0NKESa1i27R8UFRog4FqlmdQlSHAhVlqrZTdW9O7mW9gP2remysAh-OANQ49g6iSsaBN2BdrEkqG9x_VvwBcVizSA</recordid><startdate>20190204</startdate><enddate>20190204</enddate><creator>Baker, Sarah M.</creator><creator>Pociask, Derek</creator><creator>Clements, John D.</creator><creator>McLachlan, James B.</creator><creator>Morici, Lisa A.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0177-8135</orcidid></search><sort><creationdate>20190204</creationdate><title>Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia</title><author>Baker, Sarah M. ; Pociask, Derek ; Clements, John D. ; McLachlan, James B. ; Morici, Lisa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-113c304ddee3c384c5ce85f80ce26aafd4fc2323d0973b99746089d0f08da4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acute Disease</topic><topic>Adenosine diphosphate</topic><topic>Adjuvants</topic><topic>Adjuvants, Immunologic - administration & dosage</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antibodies, Bacterial - blood</topic><topic>Antibodies, Neutralizing - blood</topic><topic>Antigens</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - immunology</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - immunology</topic><topic>CD4 antigen</topic><topic>CD4-Positive T-Lymphocytes - immunology</topic><topic>Cell adhesion & migration</topic><topic>Cell migration</topic><topic>Dendritic cells</topic><topic>Disease Models, Animal</topic><topic>dmLT</topic><topic>Drug resistance</topic><topic>E coli</topic><topic>Enterotoxins - genetics</topic><topic>Enterotoxins - immunology</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - immunology</topic><topic>Female</topic><topic>Helper cells</topic><topic>Immunity</topic><topic>Immunization</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulin G - blood</topic><topic>Immunoglobulins</topic><topic>Immunologic Memory</topic><topic>Immunological memory</topic><topic>Infections</topic><topic>Injections, Intradermal</topic><topic>Interferon-gamma - immunology</topic><topic>Interleukin 17</topic><topic>Interleukin-17 - immunology</topic><topic>Intradermal</topic><topic>Laboratory animals</topic><topic>Lung</topic><topic>Lung - immunology</topic><topic>Lung - microbiology</topic><topic>Lungs</topic><topic>Lymphatic system</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Membrane proteins</topic><topic>Memory cells</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Morbidity</topic><topic>Mucosal immunity</topic><topic>Multidrug resistance</topic><topic>Mutation</topic><topic>Opportunist infection</topic><topic>Outer membrane proteins</topic><topic>Pathogens</topic><topic>Pneumonia</topic><topic>Pneumonia, Bacterial - prevention & control</topic><topic>Proteins</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas Infections - prevention & control</topic><topic>Pseudomonas Vaccines - administration & dosage</topic><topic>Pseudomonas Vaccines - immunology</topic><topic>Respiratory diseases</topic><topic>Toxins</topic><topic>Tuberculosis</topic><topic>Vaccination - methods</topic><topic>Vaccine</topic><topic>Vaccines</topic><topic>Ventilator-associated pneumonia</topic><topic>γ-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Sarah M.</creatorcontrib><creatorcontrib>Pociask, Derek</creatorcontrib><creatorcontrib>Clements, John D.</creatorcontrib><creatorcontrib>McLachlan, James B.</creatorcontrib><creatorcontrib>Morici, Lisa A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Sarah M.</au><au>Pociask, Derek</au><au>Clements, John D.</au><au>McLachlan, James B.</au><au>Morici, Lisa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia</atitle><jtitle>Vaccine</jtitle><addtitle>Vaccine</addtitle><date>2019-02-04</date><risdate>2019</risdate><volume>37</volume><issue>6</issue><spage>808</spage><epage>816</epage><pages>808-816</pages><issn>0264-410X</issn><eissn>1873-2518</eissn><abstract>Respiratory infections are a leading cause of morbidity and mortality globally. This is partially due to a lack of effective vaccines and a clear understanding of how vaccination route and formulation influence protective immunity in mucosal tissues such as the lung. Pseudomonas aeruginosa is an opportunistic pathogen capable of causing acute pulmonary infections and is a leading cause of hospital-acquired and ventilator-associated pneumonia. With multidrug-resistant P. aeruginosa infections on the rise, the need for a vaccine against this pathogen is critical. Growing evidence suggests that a successful P. aeruginosa vaccine may require mucosal antibody and Th1- and Th17-type CD4+ T cells to prevent pulmonary infection. Intradermal immunization with adjuvants, such as the bacterial ADP-Ribosylating Enterotoxin Adjuvant (BARE) double mutant of E. coli heat-labile toxin (dmLT), can direct protective immune responses to mucosal tissues, including the lungs. We reasoned that intradermal immunization with P. aeruginosa outer membrane proteins (OMPs) adjuvanted with dmLT could drive neutralizing antibodies and migration of CD4+ T cells to the lungs and protect against P. aeruginosa pneumonia in a murine model. Here we show that mice immunized with OMPs and dmLT had significantly more antigen-specific IgG and Th1- and Th17-type CD4+ memory T cells in the pulmonary environment compared to control groups of mice. Furthermore, OMPs and dmLT immunized mice were significantly protected against an otherwise lethal lung infection. Protection was associated with early IFN-γ and IL-17 production in the lungs of immunized mice. These results indicate that intradermal immunization with dmLT can drive protective immunity to the lung mucosa and may be a viable vaccination strategy for a multitude of respiratory pathogens.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>30638799</pmid><doi>10.1016/j.vaccine.2018.12.053</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0177-8135</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-410X |
ispartof | Vaccine, 2019-02, Vol.37 (6), p.808-816 |
issn | 0264-410X 1873-2518 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179372844 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Acute Disease Adenosine diphosphate Adjuvants Adjuvants, Immunologic - administration & dosage Animal models Animals Antibodies Antibodies, Bacterial - blood Antibodies, Neutralizing - blood Antigens Bacteria Bacterial infections Bacterial Outer Membrane Proteins - genetics Bacterial Outer Membrane Proteins - immunology Bacterial Toxins - genetics Bacterial Toxins - immunology CD4 antigen CD4-Positive T-Lymphocytes - immunology Cell adhesion & migration Cell migration Dendritic cells Disease Models, Animal dmLT Drug resistance E coli Enterotoxins - genetics Enterotoxins - immunology Escherichia coli Proteins - genetics Escherichia coli Proteins - immunology Female Helper cells Immunity Immunization Immunoglobulin G Immunoglobulin G - blood Immunoglobulins Immunologic Memory Immunological memory Infections Injections, Intradermal Interferon-gamma - immunology Interleukin 17 Interleukin-17 - immunology Intradermal Laboratory animals Lung Lung - immunology Lung - microbiology Lungs Lymphatic system Lymphocytes Lymphocytes T Membrane proteins Memory cells Mice Mice, Inbred C57BL Morbidity Mucosal immunity Multidrug resistance Mutation Opportunist infection Outer membrane proteins Pathogens Pneumonia Pneumonia, Bacterial - prevention & control Proteins Pseudomonas aeruginosa Pseudomonas Infections - prevention & control Pseudomonas Vaccines - administration & dosage Pseudomonas Vaccines - immunology Respiratory diseases Toxins Tuberculosis Vaccination - methods Vaccine Vaccines Ventilator-associated pneumonia γ-Interferon |
title | Intradermal vaccination with a Pseudomonas aeruginosa vaccine adjuvanted with a mutant bacterial ADP-ribosylating enterotoxin protects against acute pneumonia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intradermal%20vaccination%20with%20a%20Pseudomonas%20aeruginosa%20vaccine%20adjuvanted%20with%20a%20mutant%20bacterial%20ADP-ribosylating%20enterotoxin%20protects%20against%20acute%20pneumonia&rft.jtitle=Vaccine&rft.au=Baker,%20Sarah%20M.&rft.date=2019-02-04&rft.volume=37&rft.issue=6&rft.spage=808&rft.epage=816&rft.pages=808-816&rft.issn=0264-410X&rft.eissn=1873-2518&rft_id=info:doi/10.1016/j.vaccine.2018.12.053&rft_dat=%3Cproquest_cross%3E2179372844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170903325&rft_id=info:pmid/30638799&rft_els_id=S0264410X1930009X&rfr_iscdi=true |