Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration

Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2019-04, Vol.19 (4), p.e1800392-n/a
Hauptverfasser: Madhurakkat Perikamana, Sajeesh Kumar, Lee, Sang Min, Lee, Jinkyu, Ahmad, Taufiq, Lee, Min Suk, Yang, Hee Seok, Shin, Heungsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e1800392
container_title Macromolecular bioscience
container_volume 19
creator Madhurakkat Perikamana, Sajeesh Kumar
Lee, Sang Min
Lee, Jinkyu
Ahmad, Taufiq
Lee, Min Suk
Yang, Hee Seok
Shin, Heungsoo
description Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing. The full exploitation of biological properties of plant‐based polyphenol through its simple and efficient oxidative coating on biomaterials surface is demonstrated. The multifunctional coating serves as an interface for modulating bone healing and regeneration process.
doi_str_mv 10.1002/mabi.201800392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179363677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2209951773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-afaca8046203b69cac50c1bf8248d45603359b52ea4a0b6b4dbef69e78bd21fe3</originalsourceid><addsrcrecordid>eNqFkM1PGzEQxa2qqHz12mNlqZdeEsbetXd9hCjQSFSgFs6W7Z0NRrvr1M5S8t9jlDRIvXCaN5rfPM08Qr4wmDIAftYb66ccWA1QKP6BHDHJ5EQwJT7udV0dkuOUHgFYVSv-iRwWIEsBAo6Ivnn2jVn7J6TzlV-argvOrNE9-IFe5S5rOgsZGJY0DPQ2dJseo3f092jTOuZxom2I9CIMSO98SiPSX7jEAfPMh-GUHLSmS_h5V0_I_eX8bvZjcn1ztZidX09cWUk-Ma1xpoZSciisVM44AY7ZtuZl3ZRCQlEIZQVHUxqw0paNxVYqrGrbcNZicUK-b31XMfwZMa1175PD_MCAYUyas0oVspBVldFv_6GPYYxDvk5zDkoJlqFMTbeUiyGliK1eRd-buNEM9Gv0-jV6vY8-L3zd2Y62x2aP_8s6A2oL_PUdbt6x0z_PLxZv5i9tVJCO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209951773</pqid></control><display><type>article</type><title>Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Madhurakkat Perikamana, Sajeesh Kumar ; Lee, Sang Min ; Lee, Jinkyu ; Ahmad, Taufiq ; Lee, Min Suk ; Yang, Hee Seok ; Shin, Heungsoo</creator><creatorcontrib>Madhurakkat Perikamana, Sajeesh Kumar ; Lee, Sang Min ; Lee, Jinkyu ; Ahmad, Taufiq ; Lee, Min Suk ; Yang, Hee Seok ; Shin, Heungsoo</creatorcontrib><description>Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing. The full exploitation of biological properties of plant‐based polyphenol through its simple and efficient oxidative coating on biomaterials surface is demonstrated. The multifunctional coating serves as an interface for modulating bone healing and regeneration process.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201800392</identifier><identifier>PMID: 30645050</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adipogenesis ; Biocompatibility ; Biomaterials ; Biomedical materials ; Bone growth ; Bone healing ; bone tissue engineering ; Cationic polymerization ; Cations ; Coatings ; Differentiation (biology) ; Epigallocatechin gallate ; Epigallocatechin-3-gallate ; Flavonoids ; Formulations ; Hydrogen peroxide ; Implantation ; Lactic acid ; Macrophages ; multifunctionality ; Nanofibers ; Osteoclasts ; Oxidative stress ; plant polyphenols ; Polylactic acid ; Polymerization ; Protective coatings ; Regeneration ; Regeneration (physiology) ; Stem cell transplantation ; Stem cells ; Substrates ; surface modification ; Surgical implants ; Tissue engineering</subject><ispartof>Macromolecular bioscience, 2019-04, Vol.19 (4), p.e1800392-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-afaca8046203b69cac50c1bf8248d45603359b52ea4a0b6b4dbef69e78bd21fe3</citedby><cites>FETCH-LOGICAL-c4762-afaca8046203b69cac50c1bf8248d45603359b52ea4a0b6b4dbef69e78bd21fe3</cites><orcidid>0000-0002-9036-155X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.201800392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.201800392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30645050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Madhurakkat Perikamana, Sajeesh Kumar</creatorcontrib><creatorcontrib>Lee, Sang Min</creatorcontrib><creatorcontrib>Lee, Jinkyu</creatorcontrib><creatorcontrib>Ahmad, Taufiq</creatorcontrib><creatorcontrib>Lee, Min Suk</creatorcontrib><creatorcontrib>Yang, Hee Seok</creatorcontrib><creatorcontrib>Shin, Heungsoo</creatorcontrib><title>Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing. The full exploitation of biological properties of plant‐based polyphenol through its simple and efficient oxidative coating on biomaterials surface is demonstrated. The multifunctional coating serves as an interface for modulating bone healing and regeneration process.</description><subject>Adipogenesis</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>bone tissue engineering</subject><subject>Cationic polymerization</subject><subject>Cations</subject><subject>Coatings</subject><subject>Differentiation (biology)</subject><subject>Epigallocatechin gallate</subject><subject>Epigallocatechin-3-gallate</subject><subject>Flavonoids</subject><subject>Formulations</subject><subject>Hydrogen peroxide</subject><subject>Implantation</subject><subject>Lactic acid</subject><subject>Macrophages</subject><subject>multifunctionality</subject><subject>Nanofibers</subject><subject>Osteoclasts</subject><subject>Oxidative stress</subject><subject>plant polyphenols</subject><subject>Polylactic acid</subject><subject>Polymerization</subject><subject>Protective coatings</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Substrates</subject><subject>surface modification</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PGzEQxa2qqHz12mNlqZdeEsbetXd9hCjQSFSgFs6W7Z0NRrvr1M5S8t9jlDRIvXCaN5rfPM08Qr4wmDIAftYb66ccWA1QKP6BHDHJ5EQwJT7udV0dkuOUHgFYVSv-iRwWIEsBAo6Ivnn2jVn7J6TzlV-argvOrNE9-IFe5S5rOgsZGJY0DPQ2dJseo3f092jTOuZxom2I9CIMSO98SiPSX7jEAfPMh-GUHLSmS_h5V0_I_eX8bvZjcn1ztZidX09cWUk-Ma1xpoZSciisVM44AY7ZtuZl3ZRCQlEIZQVHUxqw0paNxVYqrGrbcNZicUK-b31XMfwZMa1175PD_MCAYUyas0oVspBVldFv_6GPYYxDvk5zDkoJlqFMTbeUiyGliK1eRd-buNEM9Gv0-jV6vY8-L3zd2Y62x2aP_8s6A2oL_PUdbt6x0z_PLxZv5i9tVJCO</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Madhurakkat Perikamana, Sajeesh Kumar</creator><creator>Lee, Sang Min</creator><creator>Lee, Jinkyu</creator><creator>Ahmad, Taufiq</creator><creator>Lee, Min Suk</creator><creator>Yang, Hee Seok</creator><creator>Shin, Heungsoo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9036-155X</orcidid></search><sort><creationdate>201904</creationdate><title>Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration</title><author>Madhurakkat Perikamana, Sajeesh Kumar ; Lee, Sang Min ; Lee, Jinkyu ; Ahmad, Taufiq ; Lee, Min Suk ; Yang, Hee Seok ; Shin, Heungsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-afaca8046203b69cac50c1bf8248d45603359b52ea4a0b6b4dbef69e78bd21fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adipogenesis</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>bone tissue engineering</topic><topic>Cationic polymerization</topic><topic>Cations</topic><topic>Coatings</topic><topic>Differentiation (biology)</topic><topic>Epigallocatechin gallate</topic><topic>Epigallocatechin-3-gallate</topic><topic>Flavonoids</topic><topic>Formulations</topic><topic>Hydrogen peroxide</topic><topic>Implantation</topic><topic>Lactic acid</topic><topic>Macrophages</topic><topic>multifunctionality</topic><topic>Nanofibers</topic><topic>Osteoclasts</topic><topic>Oxidative stress</topic><topic>plant polyphenols</topic><topic>Polylactic acid</topic><topic>Polymerization</topic><topic>Protective coatings</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Substrates</topic><topic>surface modification</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhurakkat Perikamana, Sajeesh Kumar</creatorcontrib><creatorcontrib>Lee, Sang Min</creatorcontrib><creatorcontrib>Lee, Jinkyu</creatorcontrib><creatorcontrib>Ahmad, Taufiq</creatorcontrib><creatorcontrib>Lee, Min Suk</creatorcontrib><creatorcontrib>Yang, Hee Seok</creatorcontrib><creatorcontrib>Shin, Heungsoo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhurakkat Perikamana, Sajeesh Kumar</au><au>Lee, Sang Min</au><au>Lee, Jinkyu</au><au>Ahmad, Taufiq</au><au>Lee, Min Suk</au><au>Yang, Hee Seok</au><au>Shin, Heungsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2019-04</date><risdate>2019</risdate><volume>19</volume><issue>4</issue><spage>e1800392</spage><epage>n/a</epage><pages>e1800392-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing. The full exploitation of biological properties of plant‐based polyphenol through its simple and efficient oxidative coating on biomaterials surface is demonstrated. The multifunctional coating serves as an interface for modulating bone healing and regeneration process.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30645050</pmid><doi>10.1002/mabi.201800392</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9036-155X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2019-04, Vol.19 (4), p.e1800392-n/a
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_2179363677
source Wiley Online Library Journals Frontfile Complete
subjects Adipogenesis
Biocompatibility
Biomaterials
Biomedical materials
Bone growth
Bone healing
bone tissue engineering
Cationic polymerization
Cations
Coatings
Differentiation (biology)
Epigallocatechin gallate
Epigallocatechin-3-gallate
Flavonoids
Formulations
Hydrogen peroxide
Implantation
Lactic acid
Macrophages
multifunctionality
Nanofibers
Osteoclasts
Oxidative stress
plant polyphenols
Polylactic acid
Polymerization
Protective coatings
Regeneration
Regeneration (physiology)
Stem cell transplantation
Stem cells
Substrates
surface modification
Surgical implants
Tissue engineering
title Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A17%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20Epigallocatechin%20Gallate%20Coating%20on%20Polymeric%20Substrates%20for%20Bone%20Tissue%20Regeneration&rft.jtitle=Macromolecular%20bioscience&rft.au=Madhurakkat%20Perikamana,%20Sajeesh%20Kumar&rft.date=2019-04&rft.volume=19&rft.issue=4&rft.spage=e1800392&rft.epage=n/a&rft.pages=e1800392-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201800392&rft_dat=%3Cproquest_cross%3E2209951773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209951773&rft_id=info:pmid/30645050&rfr_iscdi=true