Supercharging enables organized assembly of synthetic biomolecules
Symmetrical protein oligomers are ubiquitous in biological systems and perform key structural and regulatory functions. However, there are few methods for constructing such oligomers. Here we have engineered completely synthetic, symmetrical oligomers by combining pairs of oppositely supercharged va...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2019-03, Vol.11 (3), p.204-212 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Symmetrical protein oligomers are ubiquitous in biological systems and perform key structural and regulatory functions. However, there are few methods for constructing such oligomers. Here we have engineered completely synthetic, symmetrical oligomers by combining pairs of oppositely supercharged variants of a normally monomeric model protein through a strategy we term ‘supercharged protein assembly’ (SuPrA). We show that supercharged variants of green fluorescent protein can assemble into a variety of architectures including a well-defined symmetrical 16-mer structure that we solved using cryo-electron microscopy at 3.47 Å resolution. The 16-mer is composed of two stacked rings of octamers, in which the octamers contain supercharged proteins of alternating charges, and interactions within and between the rings are mediated by a variety of specific electrostatic contacts. The ready assembly of this structure suggests that combining oppositely supercharged pairs of protein variants may provide broad opportunities for generating novel architectures via otherwise unprogrammed interactions.
Symmetrical protein oligomers perform key structural and catalytic functions in nature, but engineering such oligomers synthetically is challenging. Now, oppositely supercharged synthetic variants of normally monomeric proteins have been shown to assemble via specific, introduced electrostatic contacts into symmetrical, highly well-defined oligomers. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/s41557-018-0196-3 |