Exploring the Sensitivity of Choropleths under Attribute Uncertainty

The choropleth map is an essential tool for spatial data analysis. However, the underlying attribute values of a spatial unit greatly influence the statistical analyses and map classification procedures when generating a choropleth map. If the attribute values incorporate a range of uncertainty, a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2020-08, Vol.26 (8), p.2576-2590
Hauptverfasser: Huang, Zhaosong, Lu, Yafeng, Mack, Elizabeth A., Chen, Wei, Maciejewski, Ross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2590
container_issue 8
container_start_page 2576
container_title IEEE transactions on visualization and computer graphics
container_volume 26
creator Huang, Zhaosong
Lu, Yafeng
Mack, Elizabeth A.
Chen, Wei
Maciejewski, Ross
description The choropleth map is an essential tool for spatial data analysis. However, the underlying attribute values of a spatial unit greatly influence the statistical analyses and map classification procedures when generating a choropleth map. If the attribute values incorporate a range of uncertainty, a critical task is determining how much the uncertainty impacts both the map visualization and the statistical analysis. In this paper, we present a visual analytics system that enhances our understanding of the impact of attribute uncertainty on data visualization and statistical analyses of these data. Our system consists of a parallel coordinates-based uncertainty specification view, an impact river and impact matrix visualization for region-based and simulation-based analysis, and a dual-choropleth map and t-SNE plot for visualizing the changes in classification and spatial autocorrelation over the range of uncertainty in the attribute values. We demonstrate our system through three use cases illustrating the impact of attribute uncertainty in geographic analysis.
doi_str_mv 10.1109/TVCG.2019.2892483
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179347442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8611178</ieee_id><sourcerecordid>2420300221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a52612dcf88023426a59d920cdf11b544dbecacc0fadbc7a3f41a9edd11d53ec3</originalsourceid><addsrcrecordid>eNpdkE2LFDEQhoMo7of-ABGkwYuXHqsq6Y8cl9l1FRY8uOs1pJNqJ0tP95ikF-ff28OMe_BUBfW8L8UjxDuEFSLoz_c_17crAtQrajWpVr4Q56gVllBB_XLZoWlKqqk-ExcpPQKgUq1-Lc4k1ApqbM7F9c2f3TDFMP4q8oaLHzymkMNTyPti6ov1ZorTbuC8ScU8eo7FVc4xdHPm4mF0HLMNY96_Ea96OyR-e5qX4uHLzf36a3n3_fbb-uqudFJTLm1FNZJ3fdsCSUW1rbTXBM73iF2llO_YWeegt75zjZW9QqvZe0RfSXbyUnw69u7i9HvmlM02JMfDYEee5mQIGy1VoxQt6Mf_0MdpjuPynSFFIAGIcKHwSLk4pRS5N7sYtjbuDYI5KDYHxeag2JwUL5kPp-a527J_TvxzugDvj0Bg5udzWyNi08q_dVyAMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420300221</pqid></control><display><type>article</type><title>Exploring the Sensitivity of Choropleths under Attribute Uncertainty</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Zhaosong ; Lu, Yafeng ; Mack, Elizabeth A. ; Chen, Wei ; Maciejewski, Ross</creator><creatorcontrib>Huang, Zhaosong ; Lu, Yafeng ; Mack, Elizabeth A. ; Chen, Wei ; Maciejewski, Ross</creatorcontrib><description>The choropleth map is an essential tool for spatial data analysis. However, the underlying attribute values of a spatial unit greatly influence the statistical analyses and map classification procedures when generating a choropleth map. If the attribute values incorporate a range of uncertainty, a critical task is determining how much the uncertainty impacts both the map visualization and the statistical analysis. In this paper, we present a visual analytics system that enhances our understanding of the impact of attribute uncertainty on data visualization and statistical analyses of these data. Our system consists of a parallel coordinates-based uncertainty specification view, an impact river and impact matrix visualization for region-based and simulation-based analysis, and a dual-choropleth map and t-SNE plot for visualizing the changes in classification and spatial autocorrelation over the range of uncertainty in the attribute values. We demonstrate our system through three use cases illustrating the impact of attribute uncertainty in geographic analysis.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2892483</identifier><identifier>PMID: 30640617</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>choropleth ; Classification ; Clustering algorithms ; Correlation ; Data analysis ; Data visualization ; Geospatial analysis ; Scientific visualization ; Spatial data ; Spatial databases ; Statistical analysis ; Uncertainty ; Uncertainty analysis ; Visual analytics ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2020-08, Vol.26 (8), p.2576-2590</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a52612dcf88023426a59d920cdf11b544dbecacc0fadbc7a3f41a9edd11d53ec3</citedby><cites>FETCH-LOGICAL-c392t-a52612dcf88023426a59d920cdf11b544dbecacc0fadbc7a3f41a9edd11d53ec3</cites><orcidid>0000-0001-8803-6355 ; 0000-0003-0354-8365 ; 0000-0002-3978-9550 ; 0000-0002-8365-4741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8611178$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8611178$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30640617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Zhaosong</creatorcontrib><creatorcontrib>Lu, Yafeng</creatorcontrib><creatorcontrib>Mack, Elizabeth A.</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Maciejewski, Ross</creatorcontrib><title>Exploring the Sensitivity of Choropleths under Attribute Uncertainty</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The choropleth map is an essential tool for spatial data analysis. However, the underlying attribute values of a spatial unit greatly influence the statistical analyses and map classification procedures when generating a choropleth map. If the attribute values incorporate a range of uncertainty, a critical task is determining how much the uncertainty impacts both the map visualization and the statistical analysis. In this paper, we present a visual analytics system that enhances our understanding of the impact of attribute uncertainty on data visualization and statistical analyses of these data. Our system consists of a parallel coordinates-based uncertainty specification view, an impact river and impact matrix visualization for region-based and simulation-based analysis, and a dual-choropleth map and t-SNE plot for visualizing the changes in classification and spatial autocorrelation over the range of uncertainty in the attribute values. We demonstrate our system through three use cases illustrating the impact of attribute uncertainty in geographic analysis.</description><subject>choropleth</subject><subject>Classification</subject><subject>Clustering algorithms</subject><subject>Correlation</subject><subject>Data analysis</subject><subject>Data visualization</subject><subject>Geospatial analysis</subject><subject>Scientific visualization</subject><subject>Spatial data</subject><subject>Spatial databases</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>Visual analytics</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE2LFDEQhoMo7of-ABGkwYuXHqsq6Y8cl9l1FRY8uOs1pJNqJ0tP95ikF-ff28OMe_BUBfW8L8UjxDuEFSLoz_c_17crAtQrajWpVr4Q56gVllBB_XLZoWlKqqk-ExcpPQKgUq1-Lc4k1ApqbM7F9c2f3TDFMP4q8oaLHzymkMNTyPti6ov1ZorTbuC8ScU8eo7FVc4xdHPm4mF0HLMNY96_Ea96OyR-e5qX4uHLzf36a3n3_fbb-uqudFJTLm1FNZJ3fdsCSUW1rbTXBM73iF2llO_YWeegt75zjZW9QqvZe0RfSXbyUnw69u7i9HvmlM02JMfDYEee5mQIGy1VoxQt6Mf_0MdpjuPynSFFIAGIcKHwSLk4pRS5N7sYtjbuDYI5KDYHxeag2JwUL5kPp-a527J_TvxzugDvj0Bg5udzWyNi08q_dVyAMw</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Huang, Zhaosong</creator><creator>Lu, Yafeng</creator><creator>Mack, Elizabeth A.</creator><creator>Chen, Wei</creator><creator>Maciejewski, Ross</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8803-6355</orcidid><orcidid>https://orcid.org/0000-0003-0354-8365</orcidid><orcidid>https://orcid.org/0000-0002-3978-9550</orcidid><orcidid>https://orcid.org/0000-0002-8365-4741</orcidid></search><sort><creationdate>20200801</creationdate><title>Exploring the Sensitivity of Choropleths under Attribute Uncertainty</title><author>Huang, Zhaosong ; Lu, Yafeng ; Mack, Elizabeth A. ; Chen, Wei ; Maciejewski, Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a52612dcf88023426a59d920cdf11b544dbecacc0fadbc7a3f41a9edd11d53ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>choropleth</topic><topic>Classification</topic><topic>Clustering algorithms</topic><topic>Correlation</topic><topic>Data analysis</topic><topic>Data visualization</topic><topic>Geospatial analysis</topic><topic>Scientific visualization</topic><topic>Spatial data</topic><topic>Spatial databases</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>Visual analytics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhaosong</creatorcontrib><creatorcontrib>Lu, Yafeng</creatorcontrib><creatorcontrib>Mack, Elizabeth A.</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Maciejewski, Ross</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Zhaosong</au><au>Lu, Yafeng</au><au>Mack, Elizabeth A.</au><au>Chen, Wei</au><au>Maciejewski, Ross</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Sensitivity of Choropleths under Attribute Uncertainty</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>26</volume><issue>8</issue><spage>2576</spage><epage>2590</epage><pages>2576-2590</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The choropleth map is an essential tool for spatial data analysis. However, the underlying attribute values of a spatial unit greatly influence the statistical analyses and map classification procedures when generating a choropleth map. If the attribute values incorporate a range of uncertainty, a critical task is determining how much the uncertainty impacts both the map visualization and the statistical analysis. In this paper, we present a visual analytics system that enhances our understanding of the impact of attribute uncertainty on data visualization and statistical analyses of these data. Our system consists of a parallel coordinates-based uncertainty specification view, an impact river and impact matrix visualization for region-based and simulation-based analysis, and a dual-choropleth map and t-SNE plot for visualizing the changes in classification and spatial autocorrelation over the range of uncertainty in the attribute values. We demonstrate our system through three use cases illustrating the impact of attribute uncertainty in geographic analysis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30640617</pmid><doi>10.1109/TVCG.2019.2892483</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8803-6355</orcidid><orcidid>https://orcid.org/0000-0003-0354-8365</orcidid><orcidid>https://orcid.org/0000-0002-3978-9550</orcidid><orcidid>https://orcid.org/0000-0002-8365-4741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2020-08, Vol.26 (8), p.2576-2590
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_2179347442
source IEEE Electronic Library (IEL)
subjects choropleth
Classification
Clustering algorithms
Correlation
Data analysis
Data visualization
Geospatial analysis
Scientific visualization
Spatial data
Spatial databases
Statistical analysis
Uncertainty
Uncertainty analysis
Visual analytics
Visualization
title Exploring the Sensitivity of Choropleths under Attribute Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Sensitivity%20of%20Choropleths%20under%20Attribute%20Uncertainty&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Huang,%20Zhaosong&rft.date=2020-08-01&rft.volume=26&rft.issue=8&rft.spage=2576&rft.epage=2590&rft.pages=2576-2590&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2892483&rft_dat=%3Cproquest_RIE%3E2420300221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420300221&rft_id=info:pmid/30640617&rft_ieee_id=8611178&rfr_iscdi=true