A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition
Phosphorus (P) is a key macronutrient whose availability has a profound effect on plant growth and productivity. The understanding of the mechanism underlying P availability-responsive P acquisition has expanded largely in the past decade; however, effects of other environmental factors on P acquisi...
Gespeichert in:
Veröffentlicht in: | Nature plants 2018-12, Vol.4 (12), p.1089-1101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1101 |
---|---|
container_issue | 12 |
container_start_page | 1089 |
container_title | Nature plants |
container_volume | 4 |
creator | Sakuraba, Yasuhito Kanno, Satomi Mabuchi, Atsushi Monda, Keina Iba, Koh Yanagisawa, Shuichi |
description | Phosphorus (P) is a key macronutrient whose availability has a profound effect on plant growth and productivity. The understanding of the mechanism underlying P availability-responsive P acquisition has expanded largely in the past decade; however, effects of other environmental factors on P acquisition and utilization remain elusive. Here, by imaging natural variation in phosphate uptake in 200 natural accessions of
Arabidopsis
, we identify two accessions with low phosphate uptake activity, Lm-2 and CSHL-5. In these accessions, natural variants of phytochrome B were found to cause both decreased light sensitivity and lower phosphate uptake. Furthermore, we also found that expression levels of phosphate starvation-responsive genes are directly modulated by phytochrome interacting factors (PIF) PIF4/PIF5 and HY5 transcription factors whose activity is under the control of phytochromes. These findings disclose a new molecular mechanism underlying red-light-induced activation of phosphate uptake, which is responsible for different activity for P acquisition in some natural accessions of
Arabidopsis
.
Plants develop shoots and roots to access light, carbon dioxide, water and nutrients. Light intensity and quality are suggested to affect root nutrient uptake. Now, the researchers identify a mechanistic link between red light and phosphorus uptake by investigating 200 natural accessions of
Arabidopsis
. |
doi_str_mv | 10.1038/s41477-018-0294-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179235647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150518283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-f4f8d30c07b2c2478a124fbc5a460b387e4ae76912e0062f1294fc2c2f75275b3</originalsourceid><addsrcrecordid>eNp1kE1PwyAYx4nRuGXuA3gxTbx4QXkt7DgXnSZLvOiZUAZbl7Zs0B727aXpfImJB_JAnh__B34AXGN0jxGVD5FhJgREWEJEZgyKMzAmiPN0EvL8134EpjHuEEJYcE5zdAlGFHEsJcVjsJxn--2x9WYbfG3hI6ztutStXWfBbrpKtz4cs9qarW7KWGfeJdzHtEIXM20OXRnLtvTNFbhwuop2eqoT8PH89L54gau35etivoKGUdlCx5xcU2SQKIghTEiNCXOF4ZrlqKBSWKatyGeYWIRy4nD6mTMJdYITwQs6AXdD7j74Q2djq-oyGltVurG-i4pgMSOU50wk9PYPuvNdaNLrEsV7A0TSROGBMsHHGKxT-1DWOhwVRqoXrQbRKolWvWjVJ9-ckrsi-fq-8aU1AWQAYmo1Gxt-Rv-f-gme7IdC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150518283</pqid></control><display><type>article</type><title>A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Sakuraba, Yasuhito ; Kanno, Satomi ; Mabuchi, Atsushi ; Monda, Keina ; Iba, Koh ; Yanagisawa, Shuichi</creator><creatorcontrib>Sakuraba, Yasuhito ; Kanno, Satomi ; Mabuchi, Atsushi ; Monda, Keina ; Iba, Koh ; Yanagisawa, Shuichi</creatorcontrib><description>Phosphorus (P) is a key macronutrient whose availability has a profound effect on plant growth and productivity. The understanding of the mechanism underlying P availability-responsive P acquisition has expanded largely in the past decade; however, effects of other environmental factors on P acquisition and utilization remain elusive. Here, by imaging natural variation in phosphate uptake in 200 natural accessions of
Arabidopsis
, we identify two accessions with low phosphate uptake activity, Lm-2 and CSHL-5. In these accessions, natural variants of phytochrome B were found to cause both decreased light sensitivity and lower phosphate uptake. Furthermore, we also found that expression levels of phosphate starvation-responsive genes are directly modulated by phytochrome interacting factors (PIF) PIF4/PIF5 and HY5 transcription factors whose activity is under the control of phytochromes. These findings disclose a new molecular mechanism underlying red-light-induced activation of phosphate uptake, which is responsible for different activity for P acquisition in some natural accessions of
Arabidopsis
.
Plants develop shoots and roots to access light, carbon dioxide, water and nutrients. Light intensity and quality are suggested to affect root nutrient uptake. Now, the researchers identify a mechanistic link between red light and phosphorus uptake by investigating 200 natural accessions of
Arabidopsis
.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-018-0294-7</identifier><identifier>PMID: 30518831</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/43 ; 38/47 ; 38/77 ; 631/449/1870 ; 631/449/2686 ; Adaptation ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis - radiation effects ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Availability ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Biomedical and Life Sciences ; Environmental factors ; Gene Expression Regulation, Plant ; Independent sample ; Life Sciences ; Light ; MicroRNAs ; Mutation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Phosphate ; Phosphate starvation response ; Phosphates ; Phosphates - metabolism ; Phosphorus ; Phosphorus - metabolism ; Phytochrome B ; Phytochrome B - genetics ; Phytochrome B - metabolism ; Phytochromes ; Plant growth ; Plant Sciences ; Proteins ; Regulatory mechanisms (biology) ; Seedlings - genetics ; Seedlings - physiology ; Seedlings - radiation effects ; Signal Transduction - radiation effects ; Transcription factors ; Visualization</subject><ispartof>Nature plants, 2018-12, Vol.4 (12), p.1089-1101</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-f4f8d30c07b2c2478a124fbc5a460b387e4ae76912e0062f1294fc2c2f75275b3</citedby><cites>FETCH-LOGICAL-c438t-f4f8d30c07b2c2478a124fbc5a460b387e4ae76912e0062f1294fc2c2f75275b3</cites><orcidid>0000-0002-3758-5933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-018-0294-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-018-0294-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30518831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakuraba, Yasuhito</creatorcontrib><creatorcontrib>Kanno, Satomi</creatorcontrib><creatorcontrib>Mabuchi, Atsushi</creatorcontrib><creatorcontrib>Monda, Keina</creatorcontrib><creatorcontrib>Iba, Koh</creatorcontrib><creatorcontrib>Yanagisawa, Shuichi</creatorcontrib><title>A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition</title><title>Nature plants</title><addtitle>Nature Plants</addtitle><addtitle>Nat Plants</addtitle><description>Phosphorus (P) is a key macronutrient whose availability has a profound effect on plant growth and productivity. The understanding of the mechanism underlying P availability-responsive P acquisition has expanded largely in the past decade; however, effects of other environmental factors on P acquisition and utilization remain elusive. Here, by imaging natural variation in phosphate uptake in 200 natural accessions of
Arabidopsis
, we identify two accessions with low phosphate uptake activity, Lm-2 and CSHL-5. In these accessions, natural variants of phytochrome B were found to cause both decreased light sensitivity and lower phosphate uptake. Furthermore, we also found that expression levels of phosphate starvation-responsive genes are directly modulated by phytochrome interacting factors (PIF) PIF4/PIF5 and HY5 transcription factors whose activity is under the control of phytochromes. These findings disclose a new molecular mechanism underlying red-light-induced activation of phosphate uptake, which is responsible for different activity for P acquisition in some natural accessions of
Arabidopsis
.
Plants develop shoots and roots to access light, carbon dioxide, water and nutrients. Light intensity and quality are suggested to affect root nutrient uptake. Now, the researchers identify a mechanistic link between red light and phosphorus uptake by investigating 200 natural accessions of
Arabidopsis
.</description><subject>38</subject><subject>38/43</subject><subject>38/47</subject><subject>38/77</subject><subject>631/449/1870</subject><subject>631/449/2686</subject><subject>Adaptation</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis - radiation effects</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Availability</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Environmental factors</subject><subject>Gene Expression Regulation, Plant</subject><subject>Independent sample</subject><subject>Life Sciences</subject><subject>Light</subject><subject>MicroRNAs</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphate</subject><subject>Phosphate starvation response</subject><subject>Phosphates</subject><subject>Phosphates - metabolism</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Phytochrome B</subject><subject>Phytochrome B - genetics</subject><subject>Phytochrome B - metabolism</subject><subject>Phytochromes</subject><subject>Plant growth</subject><subject>Plant Sciences</subject><subject>Proteins</subject><subject>Regulatory mechanisms (biology)</subject><subject>Seedlings - genetics</subject><subject>Seedlings - physiology</subject><subject>Seedlings - radiation effects</subject><subject>Signal Transduction - radiation effects</subject><subject>Transcription factors</subject><subject>Visualization</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1PwyAYx4nRuGXuA3gxTbx4QXkt7DgXnSZLvOiZUAZbl7Zs0B727aXpfImJB_JAnh__B34AXGN0jxGVD5FhJgREWEJEZgyKMzAmiPN0EvL8134EpjHuEEJYcE5zdAlGFHEsJcVjsJxn--2x9WYbfG3hI6ztutStXWfBbrpKtz4cs9qarW7KWGfeJdzHtEIXM20OXRnLtvTNFbhwuop2eqoT8PH89L54gau35etivoKGUdlCx5xcU2SQKIghTEiNCXOF4ZrlqKBSWKatyGeYWIRy4nD6mTMJdYITwQs6AXdD7j74Q2djq-oyGltVurG-i4pgMSOU50wk9PYPuvNdaNLrEsV7A0TSROGBMsHHGKxT-1DWOhwVRqoXrQbRKolWvWjVJ9-ckrsi-fq-8aU1AWQAYmo1Gxt-Rv-f-gme7IdC</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Sakuraba, Yasuhito</creator><creator>Kanno, Satomi</creator><creator>Mabuchi, Atsushi</creator><creator>Monda, Keina</creator><creator>Iba, Koh</creator><creator>Yanagisawa, Shuichi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3758-5933</orcidid></search><sort><creationdate>20181201</creationdate><title>A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition</title><author>Sakuraba, Yasuhito ; Kanno, Satomi ; Mabuchi, Atsushi ; Monda, Keina ; Iba, Koh ; Yanagisawa, Shuichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-f4f8d30c07b2c2478a124fbc5a460b387e4ae76912e0062f1294fc2c2f75275b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>38</topic><topic>38/43</topic><topic>38/47</topic><topic>38/77</topic><topic>631/449/1870</topic><topic>631/449/2686</topic><topic>Adaptation</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis - radiation effects</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Availability</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Environmental factors</topic><topic>Gene Expression Regulation, Plant</topic><topic>Independent sample</topic><topic>Life Sciences</topic><topic>Light</topic><topic>MicroRNAs</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphate</topic><topic>Phosphate starvation response</topic><topic>Phosphates</topic><topic>Phosphates - metabolism</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Phytochrome B</topic><topic>Phytochrome B - genetics</topic><topic>Phytochrome B - metabolism</topic><topic>Phytochromes</topic><topic>Plant growth</topic><topic>Plant Sciences</topic><topic>Proteins</topic><topic>Regulatory mechanisms (biology)</topic><topic>Seedlings - genetics</topic><topic>Seedlings - physiology</topic><topic>Seedlings - radiation effects</topic><topic>Signal Transduction - radiation effects</topic><topic>Transcription factors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakuraba, Yasuhito</creatorcontrib><creatorcontrib>Kanno, Satomi</creatorcontrib><creatorcontrib>Mabuchi, Atsushi</creatorcontrib><creatorcontrib>Monda, Keina</creatorcontrib><creatorcontrib>Iba, Koh</creatorcontrib><creatorcontrib>Yanagisawa, Shuichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakuraba, Yasuhito</au><au>Kanno, Satomi</au><au>Mabuchi, Atsushi</au><au>Monda, Keina</au><au>Iba, Koh</au><au>Yanagisawa, Shuichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition</atitle><jtitle>Nature plants</jtitle><stitle>Nature Plants</stitle><addtitle>Nat Plants</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>4</volume><issue>12</issue><spage>1089</spage><epage>1101</epage><pages>1089-1101</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>Phosphorus (P) is a key macronutrient whose availability has a profound effect on plant growth and productivity. The understanding of the mechanism underlying P availability-responsive P acquisition has expanded largely in the past decade; however, effects of other environmental factors on P acquisition and utilization remain elusive. Here, by imaging natural variation in phosphate uptake in 200 natural accessions of
Arabidopsis
, we identify two accessions with low phosphate uptake activity, Lm-2 and CSHL-5. In these accessions, natural variants of phytochrome B were found to cause both decreased light sensitivity and lower phosphate uptake. Furthermore, we also found that expression levels of phosphate starvation-responsive genes are directly modulated by phytochrome interacting factors (PIF) PIF4/PIF5 and HY5 transcription factors whose activity is under the control of phytochromes. These findings disclose a new molecular mechanism underlying red-light-induced activation of phosphate uptake, which is responsible for different activity for P acquisition in some natural accessions of
Arabidopsis
.
Plants develop shoots and roots to access light, carbon dioxide, water and nutrients. Light intensity and quality are suggested to affect root nutrient uptake. Now, the researchers identify a mechanistic link between red light and phosphorus uptake by investigating 200 natural accessions of
Arabidopsis
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30518831</pmid><doi>10.1038/s41477-018-0294-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3758-5933</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-0278 |
ispartof | Nature plants, 2018-12, Vol.4 (12), p.1089-1101 |
issn | 2055-0278 2055-0278 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179235647 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 38 38/43 38/47 38/77 631/449/1870 631/449/2686 Adaptation Arabidopsis Arabidopsis - genetics Arabidopsis - physiology Arabidopsis - radiation effects Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Availability Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Basic-Leucine Zipper Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - metabolism Biomedical and Life Sciences Environmental factors Gene Expression Regulation, Plant Independent sample Life Sciences Light MicroRNAs Mutation Nuclear Proteins - genetics Nuclear Proteins - metabolism Phosphate Phosphate starvation response Phosphates Phosphates - metabolism Phosphorus Phosphorus - metabolism Phytochrome B Phytochrome B - genetics Phytochrome B - metabolism Phytochromes Plant growth Plant Sciences Proteins Regulatory mechanisms (biology) Seedlings - genetics Seedlings - physiology Seedlings - radiation effects Signal Transduction - radiation effects Transcription factors Visualization |
title | A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phytochrome-B-mediated%20regulatory%20mechanism%20of%20phosphorus%20acquisition&rft.jtitle=Nature%20plants&rft.au=Sakuraba,%20Yasuhito&rft.date=2018-12-01&rft.volume=4&rft.issue=12&rft.spage=1089&rft.epage=1101&rft.pages=1089-1101&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-018-0294-7&rft_dat=%3Cproquest_cross%3E2150518283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150518283&rft_id=info:pmid/30518831&rfr_iscdi=true |