A Review of Statistical Methods for Safety Surveillance
The data-mining statistical methods used for disproportionality analysis of drug–adverse event combinations from large drug safety databases such as the FDA’s Adverse Event Reporting System (FAERS), consisting of spontaneous reports on adverse events for postmarket drugs, are called passive surveill...
Gespeichert in:
Veröffentlicht in: | Therapeutic innovation & regulatory science 2014-01, Vol.48 (1), p.98-108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1 |
container_start_page | 98 |
container_title | Therapeutic innovation & regulatory science |
container_volume | 48 |
creator | Huang, Lan Guo, Ted Zalkikar, Jyoti N. Tiwari, Ram C. |
description | The data-mining statistical methods used for disproportionality analysis of drug–adverse event combinations from large drug safety databases such as the FDA’s Adverse Event Reporting System (FAERS), consisting of spontaneous reports on adverse events for postmarket drugs, are called passive surveillance methods. However, the statistical signal detection methods for longitudinal data, as the data accrue in time, are called active surveillance methods. A review of the most commonly used passive surveillance statistical methods and the relationships among them is presented with unified notations. These methods are applied to the 2006-2012 FAERS data; the number of drug signals of disproportionate rates (SDRs) detected by each of these methods with the common SDRs from all of these methods, for the adverse event myocardial infarction, are given. Finally, there is a brief discussion on the recently developed active surveillance methods. |
doi_str_mv | 10.1177/2168479013514236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179223788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_2168479013514236</sage_id><sourcerecordid>3186680261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-e611536337ba153a9722c89350163596bdd7ba20ba74ca630342a20098f0c82b3</originalsourceid><addsrcrecordid>eNqNkN1LwzAUxYMobsy9-yQFX3ypJrlpPh7H8AsmgtPnkqbp7OjWmbQb--9N2SYyEMxL7s35nZvLQeiS4FtChLijhEsmFCaQEEaBn6B-9xQzidnpoQ56Dw29n-NwlEwEleeoB5hC5-kjMYre7Lq0m6guommjm9I3pdFV9GKbzzr3UVG7aKoL22yjaevWtqwqvTT2Ap0VuvJ2uL8H6OPh_n38FE9eH5_Ho0lsmIAmtpyQBDiAyHQotBKUGqkgwYRDoniW50GhONOCGc0BA6OhDZsW2EiawQDd7OauXP3VWt-ki9Ib2y1h69anlAhFKQgpA3p9hM7r1i3DdilhCnMFhEKg8I4yrvbe2SJduXKh3TYlOO1yTY9zDZar_eA2W9j8x3BIMQBkB_ggLWfW_fr576Hx3qNn9h_8NzdJihE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490693123</pqid></control><display><type>article</type><title>A Review of Statistical Methods for Safety Surveillance</title><source>Access via SAGE</source><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Huang, Lan ; Guo, Ted ; Zalkikar, Jyoti N. ; Tiwari, Ram C.</creator><creatorcontrib>Huang, Lan ; Guo, Ted ; Zalkikar, Jyoti N. ; Tiwari, Ram C.</creatorcontrib><description>The data-mining statistical methods used for disproportionality analysis of drug–adverse event combinations from large drug safety databases such as the FDA’s Adverse Event Reporting System (FAERS), consisting of spontaneous reports on adverse events for postmarket drugs, are called passive surveillance methods. However, the statistical signal detection methods for longitudinal data, as the data accrue in time, are called active surveillance methods. A review of the most commonly used passive surveillance statistical methods and the relationships among them is presented with unified notations. These methods are applied to the 2006-2012 FAERS data; the number of drug signals of disproportionate rates (SDRs) detected by each of these methods with the common SDRs from all of these methods, for the adverse event myocardial infarction, are given. Finally, there is a brief discussion on the recently developed active surveillance methods.</description><identifier>ISSN: 2168-4790</identifier><identifier>EISSN: 2168-4804</identifier><identifier>DOI: 10.1177/2168479013514236</identifier><identifier>PMID: 30231423</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Drug Safety and Pharmacovigilance ; Neural networks ; Pharmaceutical industry ; Pharmacotherapy ; Pharmacy ; Probability ; Product safety ; Public private partnerships ; Special Issue on Statistics</subject><ispartof>Therapeutic innovation & regulatory science, 2014-01, Vol.48 (1), p.98-108</ispartof><rights>The Author(s) 2013</rights><rights>Drug Information Association, Inc 2013</rights><rights>Copyright Drug Information Association Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-e611536337ba153a9722c89350163596bdd7ba20ba74ca630342a20098f0c82b3</citedby><cites>FETCH-LOGICAL-c473t-e611536337ba153a9722c89350163596bdd7ba20ba74ca630342a20098f0c82b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/2168479013514236$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/2168479013514236$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,41488,42557,43621,43622,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30231423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Guo, Ted</creatorcontrib><creatorcontrib>Zalkikar, Jyoti N.</creatorcontrib><creatorcontrib>Tiwari, Ram C.</creatorcontrib><title>A Review of Statistical Methods for Safety Surveillance</title><title>Therapeutic innovation & regulatory science</title><addtitle>Ther Innov Regul Sci</addtitle><addtitle>Ther Innov Regul Sci</addtitle><description>The data-mining statistical methods used for disproportionality analysis of drug–adverse event combinations from large drug safety databases such as the FDA’s Adverse Event Reporting System (FAERS), consisting of spontaneous reports on adverse events for postmarket drugs, are called passive surveillance methods. However, the statistical signal detection methods for longitudinal data, as the data accrue in time, are called active surveillance methods. A review of the most commonly used passive surveillance statistical methods and the relationships among them is presented with unified notations. These methods are applied to the 2006-2012 FAERS data; the number of drug signals of disproportionate rates (SDRs) detected by each of these methods with the common SDRs from all of these methods, for the adverse event myocardial infarction, are given. Finally, there is a brief discussion on the recently developed active surveillance methods.</description><subject>Drug Safety and Pharmacovigilance</subject><subject>Neural networks</subject><subject>Pharmaceutical industry</subject><subject>Pharmacotherapy</subject><subject>Pharmacy</subject><subject>Probability</subject><subject>Product safety</subject><subject>Public private partnerships</subject><subject>Special Issue on Statistics</subject><issn>2168-4790</issn><issn>2168-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkN1LwzAUxYMobsy9-yQFX3ypJrlpPh7H8AsmgtPnkqbp7OjWmbQb--9N2SYyEMxL7s35nZvLQeiS4FtChLijhEsmFCaQEEaBn6B-9xQzidnpoQ56Dw29n-NwlEwEleeoB5hC5-kjMYre7Lq0m6guommjm9I3pdFV9GKbzzr3UVG7aKoL22yjaevWtqwqvTT2Ap0VuvJ2uL8H6OPh_n38FE9eH5_Ho0lsmIAmtpyQBDiAyHQotBKUGqkgwYRDoniW50GhONOCGc0BA6OhDZsW2EiawQDd7OauXP3VWt-ki9Ib2y1h69anlAhFKQgpA3p9hM7r1i3DdilhCnMFhEKg8I4yrvbe2SJduXKh3TYlOO1yTY9zDZar_eA2W9j8x3BIMQBkB_ggLWfW_fr576Hx3qNn9h_8NzdJihE</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Huang, Lan</creator><creator>Guo, Ted</creator><creator>Zalkikar, Jyoti N.</creator><creator>Tiwari, Ram C.</creator><general>SAGE Publications</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>201401</creationdate><title>A Review of Statistical Methods for Safety Surveillance</title><author>Huang, Lan ; Guo, Ted ; Zalkikar, Jyoti N. ; Tiwari, Ram C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-e611536337ba153a9722c89350163596bdd7ba20ba74ca630342a20098f0c82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Drug Safety and Pharmacovigilance</topic><topic>Neural networks</topic><topic>Pharmaceutical industry</topic><topic>Pharmacotherapy</topic><topic>Pharmacy</topic><topic>Probability</topic><topic>Product safety</topic><topic>Public private partnerships</topic><topic>Special Issue on Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lan</creatorcontrib><creatorcontrib>Guo, Ted</creatorcontrib><creatorcontrib>Zalkikar, Jyoti N.</creatorcontrib><creatorcontrib>Tiwari, Ram C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Therapeutic innovation & regulatory science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lan</au><au>Guo, Ted</au><au>Zalkikar, Jyoti N.</au><au>Tiwari, Ram C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Statistical Methods for Safety Surveillance</atitle><jtitle>Therapeutic innovation & regulatory science</jtitle><stitle>Ther Innov Regul Sci</stitle><addtitle>Ther Innov Regul Sci</addtitle><date>2014-01</date><risdate>2014</risdate><volume>48</volume><issue>1</issue><spage>98</spage><epage>108</epage><pages>98-108</pages><issn>2168-4790</issn><eissn>2168-4804</eissn><abstract>The data-mining statistical methods used for disproportionality analysis of drug–adverse event combinations from large drug safety databases such as the FDA’s Adverse Event Reporting System (FAERS), consisting of spontaneous reports on adverse events for postmarket drugs, are called passive surveillance methods. However, the statistical signal detection methods for longitudinal data, as the data accrue in time, are called active surveillance methods. A review of the most commonly used passive surveillance statistical methods and the relationships among them is presented with unified notations. These methods are applied to the 2006-2012 FAERS data; the number of drug signals of disproportionate rates (SDRs) detected by each of these methods with the common SDRs from all of these methods, for the adverse event myocardial infarction, are given. Finally, there is a brief discussion on the recently developed active surveillance methods.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>30231423</pmid><doi>10.1177/2168479013514236</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-4790 |
ispartof | Therapeutic innovation & regulatory science, 2014-01, Vol.48 (1), p.98-108 |
issn | 2168-4790 2168-4804 |
language | eng |
recordid | cdi_proquest_miscellaneous_2179223788 |
source | Access via SAGE; SpringerNature Journals; Alma/SFX Local Collection |
subjects | Drug Safety and Pharmacovigilance Neural networks Pharmaceutical industry Pharmacotherapy Pharmacy Probability Product safety Public private partnerships Special Issue on Statistics |
title | A Review of Statistical Methods for Safety Surveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Statistical%20Methods%20for%20Safety%20Surveillance&rft.jtitle=Therapeutic%20innovation%20&%20regulatory%20science&rft.au=Huang,%20Lan&rft.date=2014-01&rft.volume=48&rft.issue=1&rft.spage=98&rft.epage=108&rft.pages=98-108&rft.issn=2168-4790&rft.eissn=2168-4804&rft_id=info:doi/10.1177/2168479013514236&rft_dat=%3Cproquest_cross%3E3186680261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490693123&rft_id=info:pmid/30231423&rft_sage_id=10.1177_2168479013514236&rfr_iscdi=true |