Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor‐β1/Smad2 and nuclear factor‐κB signaling pathways in human fetal lung fibroblasts

Fibroblast‐to‐myofibroblast differentiation, which is characterized by increased expression of α‐smooth muscle actin, is known to be involved in the pathogenesis of idiopathic pulmonary fibrosis. Sirtuin 6 (SIRT6), a member of the sirtuin family, has been proved to inhibit epithelial‐to‐mesenchymal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2019-01, Vol.120 (1), p.93-104
Hauptverfasser: Zhang, Qian, Tu, Wei, Tian, Kunming, Han, Lianyong, Wang, Qin, Chen, Panpan, Zhou, Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 93
container_title Journal of cellular biochemistry
container_volume 120
creator Zhang, Qian
Tu, Wei
Tian, Kunming
Han, Lianyong
Wang, Qin
Chen, Panpan
Zhou, Xue
description Fibroblast‐to‐myofibroblast differentiation, which is characterized by increased expression of α‐smooth muscle actin, is known to be involved in the pathogenesis of idiopathic pulmonary fibrosis. Sirtuin 6 (SIRT6), a member of the sirtuin family, has been proved to inhibit epithelial‐to‐mesenchymal transition during idiopathic pulmonary fibrosis. However, the function of SIRT6 in lung myofibroblast differentiation is still obscure. Transforming growth factor‐β1 (TGF‐β1) is one of the main factors that can powerfully promote myofibroblast differentiation. In the current study, we aimed to explore the role of SIRT6 in the cellular model of fibroblast‐to‐myofibroblast differentiation induced by TGF‐β1 using human fetal lung fibroblasts (HFL1). We demonstrated that the SIRT6 protein level is upregulated by TGF‐β1 in HFL1 cells. Overexpression of SIRT6 significantly suppresses TGF‐β1‐induced myofibroblast differentiation in HFL1 cells. Mechanistically, SIRT6 decreases phosphorylation and nuclear translocation of Smad2 under TGF‐β1 stimulation. Nevertheless, mutant SIRT6 (H133Y) without histone deacetylase activity fails to inhibit phosphorylation and nuclear translocation of Smad2. Meanwhile, SIRT6 interacts with the nuclear factor‐κB (NF‐κB) subunit p65 and represses TGF‐β1‐induced NF‐κB‐dependent transcriptional activity, which is also dependent on its deacetylase activity. Overexpression of wild‐type SIRT6 but not the H133Y mutant inhibits the expression of NF‐κB‐dependent genes including interleukin (IL)‐1β, IL‐6 and matrix metalloproteinase‐9 (MMP‐9) induced by TGF‐β1, all of which have been demonstrated to promote myofibroblast differentiation. Collectively, our study reveals that SIRT6 prevents TGF‐β1‐induced lung myofibroblast differentiation through inhibiting TGF‐β1/Smad2 and NF‐κB signaling pathways. Sirtuin 6 (SIRT6) overexpression attenuates fibroblast‐to‐myofibroblast differentiation induced by transforming growth factor‐β1 (TGF‐β1) in human fetal lung fibroblasts. Mechanistically, wild‐type SIRT6, but not the H133Y mutant without deacetylase activity, decreases phosphorylation and nuclear translocation of Smad2 under TGF‐β1 stimulation. Meanwhile, SIRT6 interacted with the nuclear factor‐κB (NF‐κB) subunit p65 and repressed TGF‐β1‐induced NF‐κB‐dependent transcriptional activity and the expression of NF‐κB‐dependent genes including interleukin (IL)‐1β, IL‐6 and matrix metalloproteinase‐9 (MMP‐9), which is also dependent on its deacetylase activit
doi_str_mv 10.1002/jcb.27128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179217715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179217715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3038-bf3384197865cc8a1e37aac0d320ac8910148d5fb8ce0bd039c16a36f2155b0b3</originalsourceid><addsrcrecordid>eNp1kc2OUyEYhonROLW68AYMiRtddPoB53fpNP5mEhej65MPDrQ050AFzjTdeQlei3HlRXgRXonUjj8xcUEIvA9PgJeQhwzOGQBfbpU85zXjzS0yY9DWi6IqittkBrWABReMn5F7MW4BoG0Fv0vOBHABZVXOyJcrG9JkHa2odRsrbYp0PHhjZfBywJhob43RQbtkMVnv6LXFjKJK9jpvuDVNAV00PozHxTr4fdpQk3Mfvn_89O0zW16N2HOKrqduUoPG8Ff89YJGu3Y4HA_vMG32eIjZTzfTiI4anXCgw5TDP1eK98kdg0PUD27mOXn_4vm71avF5duXr1fPLhdKgGgW0gjRFKytm6pUqkGmRY2ooBccUDUtA1Y0fWlkozTIHkSrWIWiMpyVpQQp5uTJybsL_sOkY-pGG5UeBnTaT7HjrG7zqFmZ0cf_oFs_hfyuIyUqLooq__mcPD1RKvgYgzbdLtgRw6Fj0B2r7HKV3c8qM_voxjjJUfe_yV_dZWB5AvZ20If_m7o3q4uT8geOf67e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136234602</pqid></control><display><type>article</type><title>Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor‐β1/Smad2 and nuclear factor‐κB signaling pathways in human fetal lung fibroblasts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Qian ; Tu, Wei ; Tian, Kunming ; Han, Lianyong ; Wang, Qin ; Chen, Panpan ; Zhou, Xue</creator><creatorcontrib>Zhang, Qian ; Tu, Wei ; Tian, Kunming ; Han, Lianyong ; Wang, Qin ; Chen, Panpan ; Zhou, Xue</creatorcontrib><description>Fibroblast‐to‐myofibroblast differentiation, which is characterized by increased expression of α‐smooth muscle actin, is known to be involved in the pathogenesis of idiopathic pulmonary fibrosis. Sirtuin 6 (SIRT6), a member of the sirtuin family, has been proved to inhibit epithelial‐to‐mesenchymal transition during idiopathic pulmonary fibrosis. However, the function of SIRT6 in lung myofibroblast differentiation is still obscure. Transforming growth factor‐β1 (TGF‐β1) is one of the main factors that can powerfully promote myofibroblast differentiation. In the current study, we aimed to explore the role of SIRT6 in the cellular model of fibroblast‐to‐myofibroblast differentiation induced by TGF‐β1 using human fetal lung fibroblasts (HFL1). We demonstrated that the SIRT6 protein level is upregulated by TGF‐β1 in HFL1 cells. Overexpression of SIRT6 significantly suppresses TGF‐β1‐induced myofibroblast differentiation in HFL1 cells. Mechanistically, SIRT6 decreases phosphorylation and nuclear translocation of Smad2 under TGF‐β1 stimulation. Nevertheless, mutant SIRT6 (H133Y) without histone deacetylase activity fails to inhibit phosphorylation and nuclear translocation of Smad2. Meanwhile, SIRT6 interacts with the nuclear factor‐κB (NF‐κB) subunit p65 and represses TGF‐β1‐induced NF‐κB‐dependent transcriptional activity, which is also dependent on its deacetylase activity. Overexpression of wild‐type SIRT6 but not the H133Y mutant inhibits the expression of NF‐κB‐dependent genes including interleukin (IL)‐1β, IL‐6 and matrix metalloproteinase‐9 (MMP‐9) induced by TGF‐β1, all of which have been demonstrated to promote myofibroblast differentiation. Collectively, our study reveals that SIRT6 prevents TGF‐β1‐induced lung myofibroblast differentiation through inhibiting TGF‐β1/Smad2 and NF‐κB signaling pathways. Sirtuin 6 (SIRT6) overexpression attenuates fibroblast‐to‐myofibroblast differentiation induced by transforming growth factor‐β1 (TGF‐β1) in human fetal lung fibroblasts. Mechanistically, wild‐type SIRT6, but not the H133Y mutant without deacetylase activity, decreases phosphorylation and nuclear translocation of Smad2 under TGF‐β1 stimulation. Meanwhile, SIRT6 interacted with the nuclear factor‐κB (NF‐κB) subunit p65 and repressed TGF‐β1‐induced NF‐κB‐dependent transcriptional activity and the expression of NF‐κB‐dependent genes including interleukin (IL)‐1β, IL‐6 and matrix metalloproteinase‐9 (MMP‐9), which is also dependent on its deacetylase activity.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.27128</identifier><identifier>PMID: 30230565</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Actin ; Cell Differentiation ; Cell Line ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Differentiation ; Fetuses ; Fibroblasts ; fibroblast‐to‐myofibroblast differentiation ; Fibrosis ; Gene expression ; Gene Expression Regulation ; Growth factors ; Histone deacetylase ; Humans ; idiopathic pulmonary fibrosis ; Idiopathic Pulmonary Fibrosis - metabolism ; Idiopathic Pulmonary Fibrosis - pathology ; Interleukin-1beta - genetics ; Interleukin-6 - genetics ; Interleukins ; Lung - cytology ; Lung - pathology ; Lung diseases ; Matrix metalloproteinase ; Matrix Metalloproteinase 9 - genetics ; Mesenchyme ; Metalloproteinase ; Muscles ; Myofibroblasts - metabolism ; NF-kappa B p50 Subunit - genetics ; NF-kappa B p50 Subunit - metabolism ; nuclear factor‐κB (NF‐κB) ; Nuclear transport ; Pathogenesis ; Phosphorylation ; Proteins ; Pulmonary fibrosis ; Reverse Transcriptase Polymerase Chain Reaction ; Signal transduction ; Signaling ; sirtuin 6 (SIRT6) ; Sirtuins - genetics ; Sirtuins - metabolism ; Smad2 protein ; Smad2 Protein - metabolism ; Smooth muscle ; Transcription ; Transcription, Genetic ; Transfection ; Transforming growth factor ; Transforming Growth Factor beta1 - metabolism ; Transforming Growth Factor beta1 - pharmacology ; Transforming growth factor-b1 ; transforming growth factor‐β1 (TGF‐β1)/Smad2 ; Translocation</subject><ispartof>Journal of cellular biochemistry, 2019-01, Vol.120 (1), p.93-104</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3038-bf3384197865cc8a1e37aac0d320ac8910148d5fb8ce0bd039c16a36f2155b0b3</citedby><cites>FETCH-LOGICAL-c3038-bf3384197865cc8a1e37aac0d320ac8910148d5fb8ce0bd039c16a36f2155b0b3</cites><orcidid>0000-0002-8254-9341</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.27128$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.27128$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30230565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Tu, Wei</creatorcontrib><creatorcontrib>Tian, Kunming</creatorcontrib><creatorcontrib>Han, Lianyong</creatorcontrib><creatorcontrib>Wang, Qin</creatorcontrib><creatorcontrib>Chen, Panpan</creatorcontrib><creatorcontrib>Zhou, Xue</creatorcontrib><title>Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor‐β1/Smad2 and nuclear factor‐κB signaling pathways in human fetal lung fibroblasts</title><title>Journal of cellular biochemistry</title><addtitle>J Cell Biochem</addtitle><description>Fibroblast‐to‐myofibroblast differentiation, which is characterized by increased expression of α‐smooth muscle actin, is known to be involved in the pathogenesis of idiopathic pulmonary fibrosis. Sirtuin 6 (SIRT6), a member of the sirtuin family, has been proved to inhibit epithelial‐to‐mesenchymal transition during idiopathic pulmonary fibrosis. However, the function of SIRT6 in lung myofibroblast differentiation is still obscure. Transforming growth factor‐β1 (TGF‐β1) is one of the main factors that can powerfully promote myofibroblast differentiation. In the current study, we aimed to explore the role of SIRT6 in the cellular model of fibroblast‐to‐myofibroblast differentiation induced by TGF‐β1 using human fetal lung fibroblasts (HFL1). We demonstrated that the SIRT6 protein level is upregulated by TGF‐β1 in HFL1 cells. Overexpression of SIRT6 significantly suppresses TGF‐β1‐induced myofibroblast differentiation in HFL1 cells. Mechanistically, SIRT6 decreases phosphorylation and nuclear translocation of Smad2 under TGF‐β1 stimulation. Nevertheless, mutant SIRT6 (H133Y) without histone deacetylase activity fails to inhibit phosphorylation and nuclear translocation of Smad2. Meanwhile, SIRT6 interacts with the nuclear factor‐κB (NF‐κB) subunit p65 and represses TGF‐β1‐induced NF‐κB‐dependent transcriptional activity, which is also dependent on its deacetylase activity. Overexpression of wild‐type SIRT6 but not the H133Y mutant inhibits the expression of NF‐κB‐dependent genes including interleukin (IL)‐1β, IL‐6 and matrix metalloproteinase‐9 (MMP‐9) induced by TGF‐β1, all of which have been demonstrated to promote myofibroblast differentiation. Collectively, our study reveals that SIRT6 prevents TGF‐β1‐induced lung myofibroblast differentiation through inhibiting TGF‐β1/Smad2 and NF‐κB signaling pathways. Sirtuin 6 (SIRT6) overexpression attenuates fibroblast‐to‐myofibroblast differentiation induced by transforming growth factor‐β1 (TGF‐β1) in human fetal lung fibroblasts. Mechanistically, wild‐type SIRT6, but not the H133Y mutant without deacetylase activity, decreases phosphorylation and nuclear translocation of Smad2 under TGF‐β1 stimulation. Meanwhile, SIRT6 interacted with the nuclear factor‐κB (NF‐κB) subunit p65 and repressed TGF‐β1‐induced NF‐κB‐dependent transcriptional activity and the expression of NF‐κB‐dependent genes including interleukin (IL)‐1β, IL‐6 and matrix metalloproteinase‐9 (MMP‐9), which is also dependent on its deacetylase activity.</description><subject>Actin</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Differentiation</subject><subject>Fetuses</subject><subject>Fibroblasts</subject><subject>fibroblast‐to‐myofibroblast differentiation</subject><subject>Fibrosis</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Growth factors</subject><subject>Histone deacetylase</subject><subject>Humans</subject><subject>idiopathic pulmonary fibrosis</subject><subject>Idiopathic Pulmonary Fibrosis - metabolism</subject><subject>Idiopathic Pulmonary Fibrosis - pathology</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-6 - genetics</subject><subject>Interleukins</subject><subject>Lung - cytology</subject><subject>Lung - pathology</subject><subject>Lung diseases</subject><subject>Matrix metalloproteinase</subject><subject>Matrix Metalloproteinase 9 - genetics</subject><subject>Mesenchyme</subject><subject>Metalloproteinase</subject><subject>Muscles</subject><subject>Myofibroblasts - metabolism</subject><subject>NF-kappa B p50 Subunit - genetics</subject><subject>NF-kappa B p50 Subunit - metabolism</subject><subject>nuclear factor‐κB (NF‐κB)</subject><subject>Nuclear transport</subject><subject>Pathogenesis</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Pulmonary fibrosis</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>sirtuin 6 (SIRT6)</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - metabolism</subject><subject>Smad2 protein</subject><subject>Smad2 Protein - metabolism</subject><subject>Smooth muscle</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Transforming growth factor</subject><subject>Transforming Growth Factor beta1 - metabolism</subject><subject>Transforming Growth Factor beta1 - pharmacology</subject><subject>Transforming growth factor-b1</subject><subject>transforming growth factor‐β1 (TGF‐β1)/Smad2</subject><subject>Translocation</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2OUyEYhonROLW68AYMiRtddPoB53fpNP5mEhej65MPDrQ050AFzjTdeQlei3HlRXgRXonUjj8xcUEIvA9PgJeQhwzOGQBfbpU85zXjzS0yY9DWi6IqittkBrWABReMn5F7MW4BoG0Fv0vOBHABZVXOyJcrG9JkHa2odRsrbYp0PHhjZfBywJhob43RQbtkMVnv6LXFjKJK9jpvuDVNAV00PozHxTr4fdpQk3Mfvn_89O0zW16N2HOKrqduUoPG8Ff89YJGu3Y4HA_vMG32eIjZTzfTiI4anXCgw5TDP1eK98kdg0PUD27mOXn_4vm71avF5duXr1fPLhdKgGgW0gjRFKytm6pUqkGmRY2ooBccUDUtA1Y0fWlkozTIHkSrWIWiMpyVpQQp5uTJybsL_sOkY-pGG5UeBnTaT7HjrG7zqFmZ0cf_oFs_hfyuIyUqLooq__mcPD1RKvgYgzbdLtgRw6Fj0B2r7HKV3c8qM_voxjjJUfe_yV_dZWB5AvZ20If_m7o3q4uT8geOf67e</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Zhang, Qian</creator><creator>Tu, Wei</creator><creator>Tian, Kunming</creator><creator>Han, Lianyong</creator><creator>Wang, Qin</creator><creator>Chen, Panpan</creator><creator>Zhou, Xue</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8254-9341</orcidid></search><sort><creationdate>201901</creationdate><title>Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor‐β1/Smad2 and nuclear factor‐κB signaling pathways in human fetal lung fibroblasts</title><author>Zhang, Qian ; Tu, Wei ; Tian, Kunming ; Han, Lianyong ; Wang, Qin ; Chen, Panpan ; Zhou, Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3038-bf3384197865cc8a1e37aac0d320ac8910148d5fb8ce0bd039c16a36f2155b0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actin</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Differentiation</topic><topic>Fetuses</topic><topic>Fibroblasts</topic><topic>fibroblast‐to‐myofibroblast differentiation</topic><topic>Fibrosis</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Growth factors</topic><topic>Histone deacetylase</topic><topic>Humans</topic><topic>idiopathic pulmonary fibrosis</topic><topic>Idiopathic Pulmonary Fibrosis - metabolism</topic><topic>Idiopathic Pulmonary Fibrosis - pathology</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-6 - genetics</topic><topic>Interleukins</topic><topic>Lung - cytology</topic><topic>Lung - pathology</topic><topic>Lung diseases</topic><topic>Matrix metalloproteinase</topic><topic>Matrix Metalloproteinase 9 - genetics</topic><topic>Mesenchyme</topic><topic>Metalloproteinase</topic><topic>Muscles</topic><topic>Myofibroblasts - metabolism</topic><topic>NF-kappa B p50 Subunit - genetics</topic><topic>NF-kappa B p50 Subunit - metabolism</topic><topic>nuclear factor‐κB (NF‐κB)</topic><topic>Nuclear transport</topic><topic>Pathogenesis</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Pulmonary fibrosis</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>sirtuin 6 (SIRT6)</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - metabolism</topic><topic>Smad2 protein</topic><topic>Smad2 Protein - metabolism</topic><topic>Smooth muscle</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Transforming growth factor</topic><topic>Transforming Growth Factor beta1 - metabolism</topic><topic>Transforming Growth Factor beta1 - pharmacology</topic><topic>Transforming growth factor-b1</topic><topic>transforming growth factor‐β1 (TGF‐β1)/Smad2</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Tu, Wei</creatorcontrib><creatorcontrib>Tian, Kunming</creatorcontrib><creatorcontrib>Han, Lianyong</creatorcontrib><creatorcontrib>Wang, Qin</creatorcontrib><creatorcontrib>Chen, Panpan</creatorcontrib><creatorcontrib>Zhou, Xue</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian</au><au>Tu, Wei</au><au>Tian, Kunming</au><au>Han, Lianyong</au><au>Wang, Qin</au><au>Chen, Panpan</au><au>Zhou, Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor‐β1/Smad2 and nuclear factor‐κB signaling pathways in human fetal lung fibroblasts</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J Cell Biochem</addtitle><date>2019-01</date><risdate>2019</risdate><volume>120</volume><issue>1</issue><spage>93</spage><epage>104</epage><pages>93-104</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Fibroblast‐to‐myofibroblast differentiation, which is characterized by increased expression of α‐smooth muscle actin, is known to be involved in the pathogenesis of idiopathic pulmonary fibrosis. Sirtuin 6 (SIRT6), a member of the sirtuin family, has been proved to inhibit epithelial‐to‐mesenchymal transition during idiopathic pulmonary fibrosis. However, the function of SIRT6 in lung myofibroblast differentiation is still obscure. Transforming growth factor‐β1 (TGF‐β1) is one of the main factors that can powerfully promote myofibroblast differentiation. In the current study, we aimed to explore the role of SIRT6 in the cellular model of fibroblast‐to‐myofibroblast differentiation induced by TGF‐β1 using human fetal lung fibroblasts (HFL1). We demonstrated that the SIRT6 protein level is upregulated by TGF‐β1 in HFL1 cells. Overexpression of SIRT6 significantly suppresses TGF‐β1‐induced myofibroblast differentiation in HFL1 cells. Mechanistically, SIRT6 decreases phosphorylation and nuclear translocation of Smad2 under TGF‐β1 stimulation. Nevertheless, mutant SIRT6 (H133Y) without histone deacetylase activity fails to inhibit phosphorylation and nuclear translocation of Smad2. Meanwhile, SIRT6 interacts with the nuclear factor‐κB (NF‐κB) subunit p65 and represses TGF‐β1‐induced NF‐κB‐dependent transcriptional activity, which is also dependent on its deacetylase activity. Overexpression of wild‐type SIRT6 but not the H133Y mutant inhibits the expression of NF‐κB‐dependent genes including interleukin (IL)‐1β, IL‐6 and matrix metalloproteinase‐9 (MMP‐9) induced by TGF‐β1, all of which have been demonstrated to promote myofibroblast differentiation. Collectively, our study reveals that SIRT6 prevents TGF‐β1‐induced lung myofibroblast differentiation through inhibiting TGF‐β1/Smad2 and NF‐κB signaling pathways. Sirtuin 6 (SIRT6) overexpression attenuates fibroblast‐to‐myofibroblast differentiation induced by transforming growth factor‐β1 (TGF‐β1) in human fetal lung fibroblasts. Mechanistically, wild‐type SIRT6, but not the H133Y mutant without deacetylase activity, decreases phosphorylation and nuclear translocation of Smad2 under TGF‐β1 stimulation. Meanwhile, SIRT6 interacted with the nuclear factor‐κB (NF‐κB) subunit p65 and repressed TGF‐β1‐induced NF‐κB‐dependent transcriptional activity and the expression of NF‐κB‐dependent genes including interleukin (IL)‐1β, IL‐6 and matrix metalloproteinase‐9 (MMP‐9), which is also dependent on its deacetylase activity.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30230565</pmid><doi>10.1002/jcb.27128</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8254-9341</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2019-01, Vol.120 (1), p.93-104
issn 0730-2312
1097-4644
language eng
recordid cdi_proquest_miscellaneous_2179217715
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Actin
Cell Differentiation
Cell Line
Cell Proliferation - drug effects
Cell Survival - drug effects
Differentiation
Fetuses
Fibroblasts
fibroblast‐to‐myofibroblast differentiation
Fibrosis
Gene expression
Gene Expression Regulation
Growth factors
Histone deacetylase
Humans
idiopathic pulmonary fibrosis
Idiopathic Pulmonary Fibrosis - metabolism
Idiopathic Pulmonary Fibrosis - pathology
Interleukin-1beta - genetics
Interleukin-6 - genetics
Interleukins
Lung - cytology
Lung - pathology
Lung diseases
Matrix metalloproteinase
Matrix Metalloproteinase 9 - genetics
Mesenchyme
Metalloproteinase
Muscles
Myofibroblasts - metabolism
NF-kappa B p50 Subunit - genetics
NF-kappa B p50 Subunit - metabolism
nuclear factor‐κB (NF‐κB)
Nuclear transport
Pathogenesis
Phosphorylation
Proteins
Pulmonary fibrosis
Reverse Transcriptase Polymerase Chain Reaction
Signal transduction
Signaling
sirtuin 6 (SIRT6)
Sirtuins - genetics
Sirtuins - metabolism
Smad2 protein
Smad2 Protein - metabolism
Smooth muscle
Transcription
Transcription, Genetic
Transfection
Transforming growth factor
Transforming Growth Factor beta1 - metabolism
Transforming Growth Factor beta1 - pharmacology
Transforming growth factor-b1
transforming growth factor‐β1 (TGF‐β1)/Smad2
Translocation
title Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor‐β1/Smad2 and nuclear factor‐κB signaling pathways in human fetal lung fibroblasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sirtuin%206%20inhibits%20myofibroblast%20differentiation%20via%20inactivating%20transforming%20growth%20factor%E2%80%90%CE%B21/Smad2%20and%20nuclear%20factor%E2%80%90%CE%BAB%20signaling%20pathways%20in%20human%20fetal%20lung%20fibroblasts&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Zhang,%20Qian&rft.date=2019-01&rft.volume=120&rft.issue=1&rft.spage=93&rft.epage=104&rft.pages=93-104&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.27128&rft_dat=%3Cproquest_cross%3E2179217715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136234602&rft_id=info:pmid/30230565&rfr_iscdi=true