Causes and Solutions of Recombination in Perovskite Solar Cells

Organic–inorganic hybrid perovskite materials are receiving increasing attention and becoming star materials on account of their unique and intriguing optical and electrical properties, such as high molar extinction coefficient, wide absorption spectrum, low excitonic binding energy, ambipolar carri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-11, Vol.31 (47), p.e1803019-n/a
Hauptverfasser: Chen, Jiangzhao, Park, Nam‐Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page e1803019
container_title Advanced materials (Weinheim)
container_volume 31
creator Chen, Jiangzhao
Park, Nam‐Gyu
description Organic–inorganic hybrid perovskite materials are receiving increasing attention and becoming star materials on account of their unique and intriguing optical and electrical properties, such as high molar extinction coefficient, wide absorption spectrum, low excitonic binding energy, ambipolar carrier transport property, long carrier diffusion length, and high defects tolerance. Although a high power conversion efficiency (PCE) of up to 22.7% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Obviously, trap‐assisted nonradiative (also called Shockley–Read–Hall, SRH) recombination in perovskite films and interface recombination should be mainly responsible for the above efficiency distance. Here, recent research advancements in suppressing bulk SRH recombination and interface recombination are systematically investigated. For reducing SRH recombination in the films, engineering perovskite composition, additives, dimensionality, grain orientation, nonstoichiometric approach, precursor solution, and post‐treatment are explored. The focus herein is on the recombination at perovskite/electron‐transporting material and perovskite/hole‐transporting material interfaces in normal or inverted PSCs. Strategies for suppressing bulk and interface recombination are described. Additionally, the effect of trap‐assisted nonradiative recombination on hysteresis and stability of PSCs is discussed. Finally, possible solutions and reasonable prospects for suppressing recombination losses are presented. Although high power conversion efficiency of up to 23.3% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Nonradiative recombination and charge back transfer at interfaces are mainly responsible for conversion loss. Interface engineering is the most important approach toward the theoretical efficiency in PSCs.
doi_str_mv 10.1002/adma.201803019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2179215611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315586391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4399-6791ff724c026b96e48c46869f9375565d4a1716a11f58f81612c01a641c1a2d3</originalsourceid><addsrcrecordid>eNqFkEtLw0AQgBdRbK1ePUrAi5fUmX0le5JSn1BRfJyXbbKB1CRbdxul_96EVgUvngaGbz6Gj5BjhDEC0HOT12ZMAVNggGqHDFFQjDkosUuGoJiIleTpgByEsAAAJUHukwEDygC4GJKLqWmDDZFp8ujZVe2qdE2IXBE92czV87Ix_SYqm-jRevcR3sqV7UHjo6mtqnBI9gpTBXu0nSPyen31Mr2NZw83d9PJLM44UyqWicKiSCjPgMq5kpanGZepVIViiRBS5NxggtIgFiItUpRIM0AjOWZoaM5G5GzjXXr33tqw0nUZsu4D01jXBk0xURSFROzQ0z_owrW-6b7TlKEQqWSqp8YbKvMuBG8LvfRlbfxaI-g-re7T6p-03cHJVtvOa5v_4N8tO0BtgM-ysut_dHpyeT_5lX8B97GB_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315586391</pqid></control><display><type>article</type><title>Causes and Solutions of Recombination in Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Jiangzhao ; Park, Nam‐Gyu</creator><creatorcontrib>Chen, Jiangzhao ; Park, Nam‐Gyu</creatorcontrib><description>Organic–inorganic hybrid perovskite materials are receiving increasing attention and becoming star materials on account of their unique and intriguing optical and electrical properties, such as high molar extinction coefficient, wide absorption spectrum, low excitonic binding energy, ambipolar carrier transport property, long carrier diffusion length, and high defects tolerance. Although a high power conversion efficiency (PCE) of up to 22.7% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Obviously, trap‐assisted nonradiative (also called Shockley–Read–Hall, SRH) recombination in perovskite films and interface recombination should be mainly responsible for the above efficiency distance. Here, recent research advancements in suppressing bulk SRH recombination and interface recombination are systematically investigated. For reducing SRH recombination in the films, engineering perovskite composition, additives, dimensionality, grain orientation, nonstoichiometric approach, precursor solution, and post‐treatment are explored. The focus herein is on the recombination at perovskite/electron‐transporting material and perovskite/hole‐transporting material interfaces in normal or inverted PSCs. Strategies for suppressing bulk and interface recombination are described. Additionally, the effect of trap‐assisted nonradiative recombination on hysteresis and stability of PSCs is discussed. Finally, possible solutions and reasonable prospects for suppressing recombination losses are presented. Although high power conversion efficiency of up to 23.3% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Nonradiative recombination and charge back transfer at interfaces are mainly responsible for conversion loss. Interface engineering is the most important approach toward the theoretical efficiency in PSCs.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201803019</identifier><identifier>PMID: 30230045</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Additives ; Carrier transport ; Crystal defects ; Diffusion length ; Efficiency ; Electrical properties ; Energy conversion efficiency ; Excitation spectra ; Grain orientation ; Interfaces ; Materials science ; nonradiative ; Optical properties ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; recombination ; Shockley–Read–Hall recombination ; Solar cells ; Transport properties</subject><ispartof>Advanced materials (Weinheim), 2019-11, Vol.31 (47), p.e1803019-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4399-6791ff724c026b96e48c46869f9375565d4a1716a11f58f81612c01a641c1a2d3</citedby><cites>FETCH-LOGICAL-c4399-6791ff724c026b96e48c46869f9375565d4a1716a11f58f81612c01a641c1a2d3</cites><orcidid>0000-0003-2368-6300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201803019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201803019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30230045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jiangzhao</creatorcontrib><creatorcontrib>Park, Nam‐Gyu</creatorcontrib><title>Causes and Solutions of Recombination in Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Organic–inorganic hybrid perovskite materials are receiving increasing attention and becoming star materials on account of their unique and intriguing optical and electrical properties, such as high molar extinction coefficient, wide absorption spectrum, low excitonic binding energy, ambipolar carrier transport property, long carrier diffusion length, and high defects tolerance. Although a high power conversion efficiency (PCE) of up to 22.7% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Obviously, trap‐assisted nonradiative (also called Shockley–Read–Hall, SRH) recombination in perovskite films and interface recombination should be mainly responsible for the above efficiency distance. Here, recent research advancements in suppressing bulk SRH recombination and interface recombination are systematically investigated. For reducing SRH recombination in the films, engineering perovskite composition, additives, dimensionality, grain orientation, nonstoichiometric approach, precursor solution, and post‐treatment are explored. The focus herein is on the recombination at perovskite/electron‐transporting material and perovskite/hole‐transporting material interfaces in normal or inverted PSCs. Strategies for suppressing bulk and interface recombination are described. Additionally, the effect of trap‐assisted nonradiative recombination on hysteresis and stability of PSCs is discussed. Finally, possible solutions and reasonable prospects for suppressing recombination losses are presented. Although high power conversion efficiency of up to 23.3% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Nonradiative recombination and charge back transfer at interfaces are mainly responsible for conversion loss. Interface engineering is the most important approach toward the theoretical efficiency in PSCs.</description><subject>Absorption spectra</subject><subject>Additives</subject><subject>Carrier transport</subject><subject>Crystal defects</subject><subject>Diffusion length</subject><subject>Efficiency</subject><subject>Electrical properties</subject><subject>Energy conversion efficiency</subject><subject>Excitation spectra</subject><subject>Grain orientation</subject><subject>Interfaces</subject><subject>Materials science</subject><subject>nonradiative</subject><subject>Optical properties</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>recombination</subject><subject>Shockley–Read–Hall recombination</subject><subject>Solar cells</subject><subject>Transport properties</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AQgBdRbK1ePUrAi5fUmX0le5JSn1BRfJyXbbKB1CRbdxul_96EVgUvngaGbz6Gj5BjhDEC0HOT12ZMAVNggGqHDFFQjDkosUuGoJiIleTpgByEsAAAJUHukwEDygC4GJKLqWmDDZFp8ujZVe2qdE2IXBE92czV87Ix_SYqm-jRevcR3sqV7UHjo6mtqnBI9gpTBXu0nSPyen31Mr2NZw83d9PJLM44UyqWicKiSCjPgMq5kpanGZepVIViiRBS5NxggtIgFiItUpRIM0AjOWZoaM5G5GzjXXr33tqw0nUZsu4D01jXBk0xURSFROzQ0z_owrW-6b7TlKEQqWSqp8YbKvMuBG8LvfRlbfxaI-g-re7T6p-03cHJVtvOa5v_4N8tO0BtgM-ysut_dHpyeT_5lX8B97GB_A</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Chen, Jiangzhao</creator><creator>Park, Nam‐Gyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2368-6300</orcidid></search><sort><creationdate>20191101</creationdate><title>Causes and Solutions of Recombination in Perovskite Solar Cells</title><author>Chen, Jiangzhao ; Park, Nam‐Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4399-6791ff724c026b96e48c46869f9375565d4a1716a11f58f81612c01a641c1a2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption spectra</topic><topic>Additives</topic><topic>Carrier transport</topic><topic>Crystal defects</topic><topic>Diffusion length</topic><topic>Efficiency</topic><topic>Electrical properties</topic><topic>Energy conversion efficiency</topic><topic>Excitation spectra</topic><topic>Grain orientation</topic><topic>Interfaces</topic><topic>Materials science</topic><topic>nonradiative</topic><topic>Optical properties</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>recombination</topic><topic>Shockley–Read–Hall recombination</topic><topic>Solar cells</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiangzhao</creatorcontrib><creatorcontrib>Park, Nam‐Gyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiangzhao</au><au>Park, Nam‐Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causes and Solutions of Recombination in Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>31</volume><issue>47</issue><spage>e1803019</spage><epage>n/a</epage><pages>e1803019-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Organic–inorganic hybrid perovskite materials are receiving increasing attention and becoming star materials on account of their unique and intriguing optical and electrical properties, such as high molar extinction coefficient, wide absorption spectrum, low excitonic binding energy, ambipolar carrier transport property, long carrier diffusion length, and high defects tolerance. Although a high power conversion efficiency (PCE) of up to 22.7% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Obviously, trap‐assisted nonradiative (also called Shockley–Read–Hall, SRH) recombination in perovskite films and interface recombination should be mainly responsible for the above efficiency distance. Here, recent research advancements in suppressing bulk SRH recombination and interface recombination are systematically investigated. For reducing SRH recombination in the films, engineering perovskite composition, additives, dimensionality, grain orientation, nonstoichiometric approach, precursor solution, and post‐treatment are explored. The focus herein is on the recombination at perovskite/electron‐transporting material and perovskite/hole‐transporting material interfaces in normal or inverted PSCs. Strategies for suppressing bulk and interface recombination are described. Additionally, the effect of trap‐assisted nonradiative recombination on hysteresis and stability of PSCs is discussed. Finally, possible solutions and reasonable prospects for suppressing recombination losses are presented. Although high power conversion efficiency of up to 23.3% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley–Queisser limit efficiency (30.5%). Nonradiative recombination and charge back transfer at interfaces are mainly responsible for conversion loss. Interface engineering is the most important approach toward the theoretical efficiency in PSCs.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30230045</pmid><doi>10.1002/adma.201803019</doi><tpages>56</tpages><orcidid>https://orcid.org/0000-0003-2368-6300</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-11, Vol.31 (47), p.e1803019-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2179215611
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectra
Additives
Carrier transport
Crystal defects
Diffusion length
Efficiency
Electrical properties
Energy conversion efficiency
Excitation spectra
Grain orientation
Interfaces
Materials science
nonradiative
Optical properties
perovskite solar cells
Perovskites
Photovoltaic cells
recombination
Shockley–Read–Hall recombination
Solar cells
Transport properties
title Causes and Solutions of Recombination in Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causes%20and%20Solutions%20of%20Recombination%20in%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Jiangzhao&rft.date=2019-11-01&rft.volume=31&rft.issue=47&rft.spage=e1803019&rft.epage=n/a&rft.pages=e1803019-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201803019&rft_dat=%3Cproquest_cross%3E2315586391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315586391&rft_id=info:pmid/30230045&rfr_iscdi=true