Circulating tumor DNA alterations in patients with metastatic castration‐resistant prostate cancer

Background Because cell‐free DNA (cfDNA) analysis facilitates the noninvasive genomic profiling of metastatic castration‐resistant prostate cancer (mCRPC), the authors evaluated the association between cfDNA alterations and outcomes and evolution with therapy. Methods Patients with mCRPC underwent c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer 2019-05, Vol.125 (9), p.1459-1469
Hauptverfasser: Sonpavde, Guru, Agarwal, Neeraj, Pond, Gregory Russell, Nagy, Rebecca J., Nussenzveig, Roberto H., Hahn, Andrew W., Sartor, Oliver, Gourdin, Theodore Stewart, Nandagopal, Lakshminarayanan, Ledet, Elisa M., Naik, Gurudatta, Armstrong, Andrew J., Wang, Jue, Bilen, Mehmet Asim, Gupta, Shilpa, Grivas, Petros, Pal, Sumanta K., Lanman, Richard B., Talasaz, AmirAli, Lilly, Michael B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1469
container_issue 9
container_start_page 1459
container_title Cancer
container_volume 125
creator Sonpavde, Guru
Agarwal, Neeraj
Pond, Gregory Russell
Nagy, Rebecca J.
Nussenzveig, Roberto H.
Hahn, Andrew W.
Sartor, Oliver
Gourdin, Theodore Stewart
Nandagopal, Lakshminarayanan
Ledet, Elisa M.
Naik, Gurudatta
Armstrong, Andrew J.
Wang, Jue
Bilen, Mehmet Asim
Gupta, Shilpa
Grivas, Petros
Pal, Sumanta K.
Lanman, Richard B.
Talasaz, AmirAli
Lilly, Michael B.
description Background Because cell‐free DNA (cfDNA) analysis facilitates the noninvasive genomic profiling of metastatic castration‐resistant prostate cancer (mCRPC), the authors evaluated the association between cfDNA alterations and outcomes and evolution with therapy. Methods Patients with mCRPC underwent cfDNA genomic profiling using Guardant360, which examines major cancer‐associated genes. Clinical factors, therapy information, failure‐free survival, and overall survival (OS) were obtained for select patients. The association between genomic alterations and outcomes was investigated. Results Of 514 men with mCRPC, 482 (94%) had ≥1 circulating tumor DNA (ctDNA) alteration. The most common recurrent somatic mutations were in TP53 (36%), androgen receptor (AR) (22%), adenomatous polyposis coli (APC) (10%), neurofibromin 1 (NF1) (9%), epidermal growth factor receptor (EGFR), catenin beta‐1 (CTNNB1), and AT‐rich interactive domain‐containing protein 1A (ARID1A) (6% each); and BRCA1, BRCA2, and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase catalytic subunit alpha (PIK3CA) (5% each) The most common genes with increased copy numbers were AR (30%), MYC (20%), and BRAF (18%). Clinical outcomes were available for 163 patients, 46 of whom (28.8%) were untreated for mCRPC. A higher number of ctDNA alterations, AR alterations, and amplifications of MYC and BRAF were associated with worse failure‐free survival and/or OS. On multivariable analysis, MYC amplification remained significantly associated with OS. Prior therapy and serial profiling demonstrated the evolution of alterations in AR and other genes. Conclusions ctDNA frequently was detected in this large cohort of “real‐world” patients with mCRPC, and the alterations appeared to be similar to previously reported tumor tissue alterations. A higher number of alterations, and AR and MYC alterations, appear to compromise clinical outcomes, suggesting a role for immune checkpoint inhibitors and novel AR and BET inhibitors in selected patients. Circulating tumor DNA frequently is detected in patients with advanced prostate cancer, and alterations are similar to those noted in tumor tissue. Androgen receptor alterations frequently evolve, and are associated with poor outcomes.
doi_str_mv 10.1002/cncr.31959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2165055351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165055351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3939-2fa780e2667412e3ba40f99df3e2a66881c6bcade04398a6b9f574b254a7e5ed3</originalsourceid><addsrcrecordid>eNp9kMtKxTAURYMoen1M_AAJOBGhmkfTNkOpTxAFUXAW0vRUK216TVLEmZ_gN_ol5lp14MBRTnYWO8lCaJuSA0oIOzTWuANOpZBLaEaJzBNCU7aMZoSQIhEpv19D694_xW3OBF9Fa5xkjHBJZ6guW2fGTofWPuAw9oPDx1dHWHcBXAwH63Fr8TyOYIPHL214xD0E7UOMDDZxmLiPt3cHvo25DXjuhgUA8dwacJtopdGdh63vdQPdnZ7clufJ5fXZRXl0mRguuUxYo_OCAMuyPKUMeKVT0khZNxyYzrKioCarjK6BpFwWOqtkI_K0YiLVOQio-Qbam3rj_c8j-KD61hvoOm1hGL1iNBNECC5oRHf_oE_D6Gx8nWIsWqUiZQtqf6JM_JB30Ki5a3vtXhUlauFeLdyrL_cR3vmuHKse6l_0R3YE6AS8tB28_lOlyqvyZir9BMQukN0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210015421</pqid></control><display><type>article</type><title>Circulating tumor DNA alterations in patients with metastatic castration‐resistant prostate cancer</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sonpavde, Guru ; Agarwal, Neeraj ; Pond, Gregory Russell ; Nagy, Rebecca J. ; Nussenzveig, Roberto H. ; Hahn, Andrew W. ; Sartor, Oliver ; Gourdin, Theodore Stewart ; Nandagopal, Lakshminarayanan ; Ledet, Elisa M. ; Naik, Gurudatta ; Armstrong, Andrew J. ; Wang, Jue ; Bilen, Mehmet Asim ; Gupta, Shilpa ; Grivas, Petros ; Pal, Sumanta K. ; Lanman, Richard B. ; Talasaz, AmirAli ; Lilly, Michael B.</creator><creatorcontrib>Sonpavde, Guru ; Agarwal, Neeraj ; Pond, Gregory Russell ; Nagy, Rebecca J. ; Nussenzveig, Roberto H. ; Hahn, Andrew W. ; Sartor, Oliver ; Gourdin, Theodore Stewart ; Nandagopal, Lakshminarayanan ; Ledet, Elisa M. ; Naik, Gurudatta ; Armstrong, Andrew J. ; Wang, Jue ; Bilen, Mehmet Asim ; Gupta, Shilpa ; Grivas, Petros ; Pal, Sumanta K. ; Lanman, Richard B. ; Talasaz, AmirAli ; Lilly, Michael B.</creatorcontrib><description>Background Because cell‐free DNA (cfDNA) analysis facilitates the noninvasive genomic profiling of metastatic castration‐resistant prostate cancer (mCRPC), the authors evaluated the association between cfDNA alterations and outcomes and evolution with therapy. Methods Patients with mCRPC underwent cfDNA genomic profiling using Guardant360, which examines major cancer‐associated genes. Clinical factors, therapy information, failure‐free survival, and overall survival (OS) were obtained for select patients. The association between genomic alterations and outcomes was investigated. Results Of 514 men with mCRPC, 482 (94%) had ≥1 circulating tumor DNA (ctDNA) alteration. The most common recurrent somatic mutations were in TP53 (36%), androgen receptor (AR) (22%), adenomatous polyposis coli (APC) (10%), neurofibromin 1 (NF1) (9%), epidermal growth factor receptor (EGFR), catenin beta‐1 (CTNNB1), and AT‐rich interactive domain‐containing protein 1A (ARID1A) (6% each); and BRCA1, BRCA2, and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase catalytic subunit alpha (PIK3CA) (5% each) The most common genes with increased copy numbers were AR (30%), MYC (20%), and BRAF (18%). Clinical outcomes were available for 163 patients, 46 of whom (28.8%) were untreated for mCRPC. A higher number of ctDNA alterations, AR alterations, and amplifications of MYC and BRAF were associated with worse failure‐free survival and/or OS. On multivariable analysis, MYC amplification remained significantly associated with OS. Prior therapy and serial profiling demonstrated the evolution of alterations in AR and other genes. Conclusions ctDNA frequently was detected in this large cohort of “real‐world” patients with mCRPC, and the alterations appeared to be similar to previously reported tumor tissue alterations. A higher number of alterations, and AR and MYC alterations, appear to compromise clinical outcomes, suggesting a role for immune checkpoint inhibitors and novel AR and BET inhibitors in selected patients. Circulating tumor DNA frequently is detected in patients with advanced prostate cancer, and alterations are similar to those noted in tumor tissue. Androgen receptor alterations frequently evolve, and are associated with poor outcomes.</description><identifier>ISSN: 0008-543X</identifier><identifier>ISSN: 1097-0142</identifier><identifier>EISSN: 1097-0142</identifier><identifier>DOI: 10.1002/cncr.31959</identifier><identifier>PMID: 30620391</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adenomatous polyposis coli ; Aged ; Aged, 80 and over ; Amplification ; Androgen receptors ; Biological evolution ; Biomarkers, Tumor - analysis ; Biomarkers, Tumor - blood ; Biomarkers, Tumor - genetics ; BRCA1 protein ; BRCA2 protein ; Breast cancer ; Cancer ; Castration ; castration resistant ; Catalysis ; circulating tumor DNA (ctDNA) ; Circulating Tumor DNA - analysis ; Circulating Tumor DNA - blood ; Circulating Tumor DNA - genetics ; Clinical outcomes ; Colorectal cancer ; Deoxyribonucleic acid ; DNA ; DNA Copy Number Variations ; Epidermal growth factor ; Epidermal growth factor receptors ; Evolutionary genetics ; Failure analysis ; failure‐free survival ; Genes ; Genetic disorders ; genomic profiling ; Growth factors ; Humans ; Immune checkpoint inhibitors ; Inhibitors ; Kinases ; Male ; Metastases ; Metastasis ; metastatic ; Middle Aged ; Mutation ; Myc protein ; Neoplasm Metastasis ; Neurofibromin 1 ; Oncology ; p53 Protein ; Patients ; Phosphatidylinositol ; Polyposis coli ; Polyps ; Prognosis ; Prostate cancer ; Prostatic Neoplasms, Castration-Resistant - genetics ; Prostatic Neoplasms, Castration-Resistant - mortality ; Prostatic Neoplasms, Castration-Resistant - pathology ; Prostatic Neoplasms, Castration-Resistant - therapy ; Proteins ; Retrospective Studies ; Survival ; Survival Analysis ; Therapy ; Tumors</subject><ispartof>Cancer, 2019-05, Vol.125 (9), p.1459-1469</ispartof><rights>2019 American Cancer Society</rights><rights>2019 American Cancer Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3939-2fa780e2667412e3ba40f99df3e2a66881c6bcade04398a6b9f574b254a7e5ed3</citedby><cites>FETCH-LOGICAL-c3939-2fa780e2667412e3ba40f99df3e2a66881c6bcade04398a6b9f574b254a7e5ed3</cites><orcidid>0000-0001-7012-1754 ; 0000-0001-7265-6605 ; 0000-0002-1712-0848 ; 0000-0003-2612-1348 ; 0000-0002-4153-205X ; 0000-0003-4003-1103 ; 0000-0001-8122-4329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcncr.31959$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcncr.31959$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30620391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sonpavde, Guru</creatorcontrib><creatorcontrib>Agarwal, Neeraj</creatorcontrib><creatorcontrib>Pond, Gregory Russell</creatorcontrib><creatorcontrib>Nagy, Rebecca J.</creatorcontrib><creatorcontrib>Nussenzveig, Roberto H.</creatorcontrib><creatorcontrib>Hahn, Andrew W.</creatorcontrib><creatorcontrib>Sartor, Oliver</creatorcontrib><creatorcontrib>Gourdin, Theodore Stewart</creatorcontrib><creatorcontrib>Nandagopal, Lakshminarayanan</creatorcontrib><creatorcontrib>Ledet, Elisa M.</creatorcontrib><creatorcontrib>Naik, Gurudatta</creatorcontrib><creatorcontrib>Armstrong, Andrew J.</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Bilen, Mehmet Asim</creatorcontrib><creatorcontrib>Gupta, Shilpa</creatorcontrib><creatorcontrib>Grivas, Petros</creatorcontrib><creatorcontrib>Pal, Sumanta K.</creatorcontrib><creatorcontrib>Lanman, Richard B.</creatorcontrib><creatorcontrib>Talasaz, AmirAli</creatorcontrib><creatorcontrib>Lilly, Michael B.</creatorcontrib><title>Circulating tumor DNA alterations in patients with metastatic castration‐resistant prostate cancer</title><title>Cancer</title><addtitle>Cancer</addtitle><description>Background Because cell‐free DNA (cfDNA) analysis facilitates the noninvasive genomic profiling of metastatic castration‐resistant prostate cancer (mCRPC), the authors evaluated the association between cfDNA alterations and outcomes and evolution with therapy. Methods Patients with mCRPC underwent cfDNA genomic profiling using Guardant360, which examines major cancer‐associated genes. Clinical factors, therapy information, failure‐free survival, and overall survival (OS) were obtained for select patients. The association between genomic alterations and outcomes was investigated. Results Of 514 men with mCRPC, 482 (94%) had ≥1 circulating tumor DNA (ctDNA) alteration. The most common recurrent somatic mutations were in TP53 (36%), androgen receptor (AR) (22%), adenomatous polyposis coli (APC) (10%), neurofibromin 1 (NF1) (9%), epidermal growth factor receptor (EGFR), catenin beta‐1 (CTNNB1), and AT‐rich interactive domain‐containing protein 1A (ARID1A) (6% each); and BRCA1, BRCA2, and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase catalytic subunit alpha (PIK3CA) (5% each) The most common genes with increased copy numbers were AR (30%), MYC (20%), and BRAF (18%). Clinical outcomes were available for 163 patients, 46 of whom (28.8%) were untreated for mCRPC. A higher number of ctDNA alterations, AR alterations, and amplifications of MYC and BRAF were associated with worse failure‐free survival and/or OS. On multivariable analysis, MYC amplification remained significantly associated with OS. Prior therapy and serial profiling demonstrated the evolution of alterations in AR and other genes. Conclusions ctDNA frequently was detected in this large cohort of “real‐world” patients with mCRPC, and the alterations appeared to be similar to previously reported tumor tissue alterations. A higher number of alterations, and AR and MYC alterations, appear to compromise clinical outcomes, suggesting a role for immune checkpoint inhibitors and novel AR and BET inhibitors in selected patients. Circulating tumor DNA frequently is detected in patients with advanced prostate cancer, and alterations are similar to those noted in tumor tissue. Androgen receptor alterations frequently evolve, and are associated with poor outcomes.</description><subject>Adenomatous polyposis coli</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Amplification</subject><subject>Androgen receptors</subject><subject>Biological evolution</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Biomarkers, Tumor - blood</subject><subject>Biomarkers, Tumor - genetics</subject><subject>BRCA1 protein</subject><subject>BRCA2 protein</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Castration</subject><subject>castration resistant</subject><subject>Catalysis</subject><subject>circulating tumor DNA (ctDNA)</subject><subject>Circulating Tumor DNA - analysis</subject><subject>Circulating Tumor DNA - blood</subject><subject>Circulating Tumor DNA - genetics</subject><subject>Clinical outcomes</subject><subject>Colorectal cancer</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Copy Number Variations</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>Evolutionary genetics</subject><subject>Failure analysis</subject><subject>failure‐free survival</subject><subject>Genes</subject><subject>Genetic disorders</subject><subject>genomic profiling</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immune checkpoint inhibitors</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Male</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>metastatic</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Myc protein</subject><subject>Neoplasm Metastasis</subject><subject>Neurofibromin 1</subject><subject>Oncology</subject><subject>p53 Protein</subject><subject>Patients</subject><subject>Phosphatidylinositol</subject><subject>Polyposis coli</subject><subject>Polyps</subject><subject>Prognosis</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms, Castration-Resistant - genetics</subject><subject>Prostatic Neoplasms, Castration-Resistant - mortality</subject><subject>Prostatic Neoplasms, Castration-Resistant - pathology</subject><subject>Prostatic Neoplasms, Castration-Resistant - therapy</subject><subject>Proteins</subject><subject>Retrospective Studies</subject><subject>Survival</subject><subject>Survival Analysis</subject><subject>Therapy</subject><subject>Tumors</subject><issn>0008-543X</issn><issn>1097-0142</issn><issn>1097-0142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxTAURYMoen1M_AAJOBGhmkfTNkOpTxAFUXAW0vRUK216TVLEmZ_gN_ol5lp14MBRTnYWO8lCaJuSA0oIOzTWuANOpZBLaEaJzBNCU7aMZoSQIhEpv19D694_xW3OBF9Fa5xkjHBJZ6guW2fGTofWPuAw9oPDx1dHWHcBXAwH63Fr8TyOYIPHL214xD0E7UOMDDZxmLiPt3cHvo25DXjuhgUA8dwacJtopdGdh63vdQPdnZ7clufJ5fXZRXl0mRguuUxYo_OCAMuyPKUMeKVT0khZNxyYzrKioCarjK6BpFwWOqtkI_K0YiLVOQio-Qbam3rj_c8j-KD61hvoOm1hGL1iNBNECC5oRHf_oE_D6Gx8nWIsWqUiZQtqf6JM_JB30Ki5a3vtXhUlauFeLdyrL_cR3vmuHKse6l_0R3YE6AS8tB28_lOlyqvyZir9BMQukN0</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sonpavde, Guru</creator><creator>Agarwal, Neeraj</creator><creator>Pond, Gregory Russell</creator><creator>Nagy, Rebecca J.</creator><creator>Nussenzveig, Roberto H.</creator><creator>Hahn, Andrew W.</creator><creator>Sartor, Oliver</creator><creator>Gourdin, Theodore Stewart</creator><creator>Nandagopal, Lakshminarayanan</creator><creator>Ledet, Elisa M.</creator><creator>Naik, Gurudatta</creator><creator>Armstrong, Andrew J.</creator><creator>Wang, Jue</creator><creator>Bilen, Mehmet Asim</creator><creator>Gupta, Shilpa</creator><creator>Grivas, Petros</creator><creator>Pal, Sumanta K.</creator><creator>Lanman, Richard B.</creator><creator>Talasaz, AmirAli</creator><creator>Lilly, Michael B.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7012-1754</orcidid><orcidid>https://orcid.org/0000-0001-7265-6605</orcidid><orcidid>https://orcid.org/0000-0002-1712-0848</orcidid><orcidid>https://orcid.org/0000-0003-2612-1348</orcidid><orcidid>https://orcid.org/0000-0002-4153-205X</orcidid><orcidid>https://orcid.org/0000-0003-4003-1103</orcidid><orcidid>https://orcid.org/0000-0001-8122-4329</orcidid></search><sort><creationdate>20190501</creationdate><title>Circulating tumor DNA alterations in patients with metastatic castration‐resistant prostate cancer</title><author>Sonpavde, Guru ; Agarwal, Neeraj ; Pond, Gregory Russell ; Nagy, Rebecca J. ; Nussenzveig, Roberto H. ; Hahn, Andrew W. ; Sartor, Oliver ; Gourdin, Theodore Stewart ; Nandagopal, Lakshminarayanan ; Ledet, Elisa M. ; Naik, Gurudatta ; Armstrong, Andrew J. ; Wang, Jue ; Bilen, Mehmet Asim ; Gupta, Shilpa ; Grivas, Petros ; Pal, Sumanta K. ; Lanman, Richard B. ; Talasaz, AmirAli ; Lilly, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3939-2fa780e2667412e3ba40f99df3e2a66881c6bcade04398a6b9f574b254a7e5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenomatous polyposis coli</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Amplification</topic><topic>Androgen receptors</topic><topic>Biological evolution</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Biomarkers, Tumor - blood</topic><topic>Biomarkers, Tumor - genetics</topic><topic>BRCA1 protein</topic><topic>BRCA2 protein</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Castration</topic><topic>castration resistant</topic><topic>Catalysis</topic><topic>circulating tumor DNA (ctDNA)</topic><topic>Circulating Tumor DNA - analysis</topic><topic>Circulating Tumor DNA - blood</topic><topic>Circulating Tumor DNA - genetics</topic><topic>Clinical outcomes</topic><topic>Colorectal cancer</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Copy Number Variations</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>Evolutionary genetics</topic><topic>Failure analysis</topic><topic>failure‐free survival</topic><topic>Genes</topic><topic>Genetic disorders</topic><topic>genomic profiling</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immune checkpoint inhibitors</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Male</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>metastatic</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Myc protein</topic><topic>Neoplasm Metastasis</topic><topic>Neurofibromin 1</topic><topic>Oncology</topic><topic>p53 Protein</topic><topic>Patients</topic><topic>Phosphatidylinositol</topic><topic>Polyposis coli</topic><topic>Polyps</topic><topic>Prognosis</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms, Castration-Resistant - genetics</topic><topic>Prostatic Neoplasms, Castration-Resistant - mortality</topic><topic>Prostatic Neoplasms, Castration-Resistant - pathology</topic><topic>Prostatic Neoplasms, Castration-Resistant - therapy</topic><topic>Proteins</topic><topic>Retrospective Studies</topic><topic>Survival</topic><topic>Survival Analysis</topic><topic>Therapy</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonpavde, Guru</creatorcontrib><creatorcontrib>Agarwal, Neeraj</creatorcontrib><creatorcontrib>Pond, Gregory Russell</creatorcontrib><creatorcontrib>Nagy, Rebecca J.</creatorcontrib><creatorcontrib>Nussenzveig, Roberto H.</creatorcontrib><creatorcontrib>Hahn, Andrew W.</creatorcontrib><creatorcontrib>Sartor, Oliver</creatorcontrib><creatorcontrib>Gourdin, Theodore Stewart</creatorcontrib><creatorcontrib>Nandagopal, Lakshminarayanan</creatorcontrib><creatorcontrib>Ledet, Elisa M.</creatorcontrib><creatorcontrib>Naik, Gurudatta</creatorcontrib><creatorcontrib>Armstrong, Andrew J.</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Bilen, Mehmet Asim</creatorcontrib><creatorcontrib>Gupta, Shilpa</creatorcontrib><creatorcontrib>Grivas, Petros</creatorcontrib><creatorcontrib>Pal, Sumanta K.</creatorcontrib><creatorcontrib>Lanman, Richard B.</creatorcontrib><creatorcontrib>Talasaz, AmirAli</creatorcontrib><creatorcontrib>Lilly, Michael B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonpavde, Guru</au><au>Agarwal, Neeraj</au><au>Pond, Gregory Russell</au><au>Nagy, Rebecca J.</au><au>Nussenzveig, Roberto H.</au><au>Hahn, Andrew W.</au><au>Sartor, Oliver</au><au>Gourdin, Theodore Stewart</au><au>Nandagopal, Lakshminarayanan</au><au>Ledet, Elisa M.</au><au>Naik, Gurudatta</au><au>Armstrong, Andrew J.</au><au>Wang, Jue</au><au>Bilen, Mehmet Asim</au><au>Gupta, Shilpa</au><au>Grivas, Petros</au><au>Pal, Sumanta K.</au><au>Lanman, Richard B.</au><au>Talasaz, AmirAli</au><au>Lilly, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circulating tumor DNA alterations in patients with metastatic castration‐resistant prostate cancer</atitle><jtitle>Cancer</jtitle><addtitle>Cancer</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>125</volume><issue>9</issue><spage>1459</spage><epage>1469</epage><pages>1459-1469</pages><issn>0008-543X</issn><issn>1097-0142</issn><eissn>1097-0142</eissn><abstract>Background Because cell‐free DNA (cfDNA) analysis facilitates the noninvasive genomic profiling of metastatic castration‐resistant prostate cancer (mCRPC), the authors evaluated the association between cfDNA alterations and outcomes and evolution with therapy. Methods Patients with mCRPC underwent cfDNA genomic profiling using Guardant360, which examines major cancer‐associated genes. Clinical factors, therapy information, failure‐free survival, and overall survival (OS) were obtained for select patients. The association between genomic alterations and outcomes was investigated. Results Of 514 men with mCRPC, 482 (94%) had ≥1 circulating tumor DNA (ctDNA) alteration. The most common recurrent somatic mutations were in TP53 (36%), androgen receptor (AR) (22%), adenomatous polyposis coli (APC) (10%), neurofibromin 1 (NF1) (9%), epidermal growth factor receptor (EGFR), catenin beta‐1 (CTNNB1), and AT‐rich interactive domain‐containing protein 1A (ARID1A) (6% each); and BRCA1, BRCA2, and phosphatidylinositol‐4,5‐bisphosphate 3‐kinase catalytic subunit alpha (PIK3CA) (5% each) The most common genes with increased copy numbers were AR (30%), MYC (20%), and BRAF (18%). Clinical outcomes were available for 163 patients, 46 of whom (28.8%) were untreated for mCRPC. A higher number of ctDNA alterations, AR alterations, and amplifications of MYC and BRAF were associated with worse failure‐free survival and/or OS. On multivariable analysis, MYC amplification remained significantly associated with OS. Prior therapy and serial profiling demonstrated the evolution of alterations in AR and other genes. Conclusions ctDNA frequently was detected in this large cohort of “real‐world” patients with mCRPC, and the alterations appeared to be similar to previously reported tumor tissue alterations. A higher number of alterations, and AR and MYC alterations, appear to compromise clinical outcomes, suggesting a role for immune checkpoint inhibitors and novel AR and BET inhibitors in selected patients. Circulating tumor DNA frequently is detected in patients with advanced prostate cancer, and alterations are similar to those noted in tumor tissue. Androgen receptor alterations frequently evolve, and are associated with poor outcomes.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30620391</pmid><doi>10.1002/cncr.31959</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7012-1754</orcidid><orcidid>https://orcid.org/0000-0001-7265-6605</orcidid><orcidid>https://orcid.org/0000-0002-1712-0848</orcidid><orcidid>https://orcid.org/0000-0003-2612-1348</orcidid><orcidid>https://orcid.org/0000-0002-4153-205X</orcidid><orcidid>https://orcid.org/0000-0003-4003-1103</orcidid><orcidid>https://orcid.org/0000-0001-8122-4329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-543X
ispartof Cancer, 2019-05, Vol.125 (9), p.1459-1469
issn 0008-543X
1097-0142
1097-0142
language eng
recordid cdi_proquest_miscellaneous_2165055351
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adenomatous polyposis coli
Aged
Aged, 80 and over
Amplification
Androgen receptors
Biological evolution
Biomarkers, Tumor - analysis
Biomarkers, Tumor - blood
Biomarkers, Tumor - genetics
BRCA1 protein
BRCA2 protein
Breast cancer
Cancer
Castration
castration resistant
Catalysis
circulating tumor DNA (ctDNA)
Circulating Tumor DNA - analysis
Circulating Tumor DNA - blood
Circulating Tumor DNA - genetics
Clinical outcomes
Colorectal cancer
Deoxyribonucleic acid
DNA
DNA Copy Number Variations
Epidermal growth factor
Epidermal growth factor receptors
Evolutionary genetics
Failure analysis
failure‐free survival
Genes
Genetic disorders
genomic profiling
Growth factors
Humans
Immune checkpoint inhibitors
Inhibitors
Kinases
Male
Metastases
Metastasis
metastatic
Middle Aged
Mutation
Myc protein
Neoplasm Metastasis
Neurofibromin 1
Oncology
p53 Protein
Patients
Phosphatidylinositol
Polyposis coli
Polyps
Prognosis
Prostate cancer
Prostatic Neoplasms, Castration-Resistant - genetics
Prostatic Neoplasms, Castration-Resistant - mortality
Prostatic Neoplasms, Castration-Resistant - pathology
Prostatic Neoplasms, Castration-Resistant - therapy
Proteins
Retrospective Studies
Survival
Survival Analysis
Therapy
Tumors
title Circulating tumor DNA alterations in patients with metastatic castration‐resistant prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circulating%20tumor%20DNA%20alterations%20in%20patients%20with%20metastatic%20castration%E2%80%90resistant%20prostate%20cancer&rft.jtitle=Cancer&rft.au=Sonpavde,%20Guru&rft.date=2019-05-01&rft.volume=125&rft.issue=9&rft.spage=1459&rft.epage=1469&rft.pages=1459-1469&rft.issn=0008-543X&rft.eissn=1097-0142&rft_id=info:doi/10.1002/cncr.31959&rft_dat=%3Cproquest_cross%3E2165055351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210015421&rft_id=info:pmid/30620391&rfr_iscdi=true