A fast adaptive active contour model based on local gray difference for parotid duct

To establish a fast adaptive active contour model based on local gray difference for parotid duct image segmentation. On the basis of the LBF model, we added the mean difference of the local gray scale inside and outside the contour as the energy term of the driving evolution curve, and the local gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nan fang yi ke da xue xue bao = Journal of Southern Medical University 2018-12, Vol.38 (12), p.1485-1491
Hauptverfasser: Deng, Xuan, Lan, Tianjun, Zhang, Minghui, Chen, Zhifeng, Tao, Qian, Lu, Zhentai
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1491
container_issue 12
container_start_page 1485
container_title Nan fang yi ke da xue xue bao = Journal of Southern Medical University
container_volume 38
creator Deng, Xuan
Lan, Tianjun
Zhang, Minghui
Chen, Zhifeng
Tao, Qian
Lu, Zhentai
description To establish a fast adaptive active contour model based on local gray difference for parotid duct image segmentation. On the basis of the LBF model, we added the mean difference of the local gray scale inside and outside the contour as the energy term of the driving evolution curve, and the local gray-scale variance difference was used to replace and as the control term of the energy parameter value. Two local similarity factors of different neighborhood sizes were introduced to correct the effects of image gray unevenness and boundary blur to improve the segmentation efficiency. During image segmentation, this algorithm allowed for adaptive adjustment of the evolution direction, velocity and the energy weight of the internal and external regions according to the difference of gray mean and variance between the internal and external regions. This algorithm was also capable of detecting the actual boundary in a complex gradient boundary region, thus enabling the evolution curve to approach the target boundary
doi_str_mv 10.12122/j.issn.1673-4254.2018.12.14
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2164558400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164558400</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-f6fe0622b8b97d751e41ce412b57b504d6edd6ab8a0284b9c3669fc44f7559473</originalsourceid><addsrcrecordid>eNo9kDtPwzAAhD2AaFX6F5AHBpYEv52MVcVLqsRS5shPZJTEwXaQ-u-JoDCcTrr7dMMBcItRjQkm5P6jDjmPNRaSVoxwVhOEm6WrMbsA6_94BbY5B404phJxga7AiiKB6QKvwXEHvcoFKqumEr4cVObHTBxLnBMconU91Co7C-MI-2hUD9-TOkEbvHfJjcZBHxOcVIolWGhnU67BpVd9dtuzb8Db48Nx_1wdXp9e9rtDNWEiSuWFd0gQohvdSis5dgybRURzqTliVjhrhdKNQqRhujVUiNYbxrzkvGWSbsDd7-6U4ufscumGkI3rezW6OOeOYME4bxhCC3pzRmc9ONtNKQwqnbq_J-g3I2Nh0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164558400</pqid></control><display><type>article</type><title>A fast adaptive active contour model based on local gray difference for parotid duct</title><source>MEDLINE</source><source>PubMed Central</source><creator>Deng, Xuan ; Lan, Tianjun ; Zhang, Minghui ; Chen, Zhifeng ; Tao, Qian ; Lu, Zhentai</creator><creatorcontrib>Deng, Xuan ; Lan, Tianjun ; Zhang, Minghui ; Chen, Zhifeng ; Tao, Qian ; Lu, Zhentai</creatorcontrib><description>To establish a fast adaptive active contour model based on local gray difference for parotid duct image segmentation. On the basis of the LBF model, we added the mean difference of the local gray scale inside and outside the contour as the energy term of the driving evolution curve, and the local gray-scale variance difference was used to replace and as the control term of the energy parameter value. Two local similarity factors of different neighborhood sizes were introduced to correct the effects of image gray unevenness and boundary blur to improve the segmentation efficiency. During image segmentation, this algorithm allowed for adaptive adjustment of the evolution direction, velocity and the energy weight of the internal and external regions according to the difference of gray mean and variance between the internal and external regions. This algorithm was also capable of detecting the actual boundary in a complex gradient boundary region, thus enabling the evolution curve to approach the target boundary</description><identifier>ISSN: 1673-4254</identifier><identifier>DOI: 10.12122/j.issn.1673-4254.2018.12.14</identifier><identifier>PMID: 30613018</identifier><language>chi</language><publisher>China</publisher><subject>Algorithms ; Color ; Image Processing, Computer-Assisted ; Parotid Gland - diagnostic imaging ; Salivary Ducts - diagnostic imaging</subject><ispartof>Nan fang yi ke da xue xue bao = Journal of Southern Medical University, 2018-12, Vol.38 (12), p.1485-1491</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30613018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Xuan</creatorcontrib><creatorcontrib>Lan, Tianjun</creatorcontrib><creatorcontrib>Zhang, Minghui</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><creatorcontrib>Tao, Qian</creatorcontrib><creatorcontrib>Lu, Zhentai</creatorcontrib><title>A fast adaptive active contour model based on local gray difference for parotid duct</title><title>Nan fang yi ke da xue xue bao = Journal of Southern Medical University</title><addtitle>Nan Fang Yi Ke Da Xue Xue Bao</addtitle><description>To establish a fast adaptive active contour model based on local gray difference for parotid duct image segmentation. On the basis of the LBF model, we added the mean difference of the local gray scale inside and outside the contour as the energy term of the driving evolution curve, and the local gray-scale variance difference was used to replace and as the control term of the energy parameter value. Two local similarity factors of different neighborhood sizes were introduced to correct the effects of image gray unevenness and boundary blur to improve the segmentation efficiency. During image segmentation, this algorithm allowed for adaptive adjustment of the evolution direction, velocity and the energy weight of the internal and external regions according to the difference of gray mean and variance between the internal and external regions. This algorithm was also capable of detecting the actual boundary in a complex gradient boundary region, thus enabling the evolution curve to approach the target boundary</description><subject>Algorithms</subject><subject>Color</subject><subject>Image Processing, Computer-Assisted</subject><subject>Parotid Gland - diagnostic imaging</subject><subject>Salivary Ducts - diagnostic imaging</subject><issn>1673-4254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kDtPwzAAhD2AaFX6F5AHBpYEv52MVcVLqsRS5shPZJTEwXaQ-u-JoDCcTrr7dMMBcItRjQkm5P6jDjmPNRaSVoxwVhOEm6WrMbsA6_94BbY5B404phJxga7AiiKB6QKvwXEHvcoFKqumEr4cVObHTBxLnBMconU91Co7C-MI-2hUD9-TOkEbvHfJjcZBHxOcVIolWGhnU67BpVd9dtuzb8Db48Nx_1wdXp9e9rtDNWEiSuWFd0gQohvdSis5dgybRURzqTliVjhrhdKNQqRhujVUiNYbxrzkvGWSbsDd7-6U4ufscumGkI3rezW6OOeOYME4bxhCC3pzRmc9ONtNKQwqnbq_J-g3I2Nh0w</recordid><startdate>20181230</startdate><enddate>20181230</enddate><creator>Deng, Xuan</creator><creator>Lan, Tianjun</creator><creator>Zhang, Minghui</creator><creator>Chen, Zhifeng</creator><creator>Tao, Qian</creator><creator>Lu, Zhentai</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20181230</creationdate><title>A fast adaptive active contour model based on local gray difference for parotid duct</title><author>Deng, Xuan ; Lan, Tianjun ; Zhang, Minghui ; Chen, Zhifeng ; Tao, Qian ; Lu, Zhentai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-f6fe0622b8b97d751e41ce412b57b504d6edd6ab8a0284b9c3669fc44f7559473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Image Processing, Computer-Assisted</topic><topic>Parotid Gland - diagnostic imaging</topic><topic>Salivary Ducts - diagnostic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Deng, Xuan</creatorcontrib><creatorcontrib>Lan, Tianjun</creatorcontrib><creatorcontrib>Zhang, Minghui</creatorcontrib><creatorcontrib>Chen, Zhifeng</creatorcontrib><creatorcontrib>Tao, Qian</creatorcontrib><creatorcontrib>Lu, Zhentai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nan fang yi ke da xue xue bao = Journal of Southern Medical University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Xuan</au><au>Lan, Tianjun</au><au>Zhang, Minghui</au><au>Chen, Zhifeng</au><au>Tao, Qian</au><au>Lu, Zhentai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast adaptive active contour model based on local gray difference for parotid duct</atitle><jtitle>Nan fang yi ke da xue xue bao = Journal of Southern Medical University</jtitle><addtitle>Nan Fang Yi Ke Da Xue Xue Bao</addtitle><date>2018-12-30</date><risdate>2018</risdate><volume>38</volume><issue>12</issue><spage>1485</spage><epage>1491</epage><pages>1485-1491</pages><issn>1673-4254</issn><abstract>To establish a fast adaptive active contour model based on local gray difference for parotid duct image segmentation. On the basis of the LBF model, we added the mean difference of the local gray scale inside and outside the contour as the energy term of the driving evolution curve, and the local gray-scale variance difference was used to replace and as the control term of the energy parameter value. Two local similarity factors of different neighborhood sizes were introduced to correct the effects of image gray unevenness and boundary blur to improve the segmentation efficiency. During image segmentation, this algorithm allowed for adaptive adjustment of the evolution direction, velocity and the energy weight of the internal and external regions according to the difference of gray mean and variance between the internal and external regions. This algorithm was also capable of detecting the actual boundary in a complex gradient boundary region, thus enabling the evolution curve to approach the target boundary</abstract><cop>China</cop><pmid>30613018</pmid><doi>10.12122/j.issn.1673-4254.2018.12.14</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1673-4254
ispartof Nan fang yi ke da xue xue bao = Journal of Southern Medical University, 2018-12, Vol.38 (12), p.1485-1491
issn 1673-4254
language chi
recordid cdi_proquest_miscellaneous_2164558400
source MEDLINE; PubMed Central
subjects Algorithms
Color
Image Processing, Computer-Assisted
Parotid Gland - diagnostic imaging
Salivary Ducts - diagnostic imaging
title A fast adaptive active contour model based on local gray difference for parotid duct
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20adaptive%20active%20contour%20model%20based%20on%20local%20gray%20difference%20for%20parotid%20duct&rft.jtitle=Nan%20fang%20yi%20ke%20da%20xue%20xue%20bao%20=%20Journal%20of%20Southern%20Medical%20University&rft.au=Deng,%20Xuan&rft.date=2018-12-30&rft.volume=38&rft.issue=12&rft.spage=1485&rft.epage=1491&rft.pages=1485-1491&rft.issn=1673-4254&rft_id=info:doi/10.12122/j.issn.1673-4254.2018.12.14&rft_dat=%3Cproquest_pubme%3E2164558400%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164558400&rft_id=info:pmid/30613018&rfr_iscdi=true