Resonance Natural Bond Orbitals: Efficient Semilocalized Orbitals for Computing and Visualizing Reactive Chemical Processes
We describe a practical algorithm for calculating NBO-based “resonance natural bond orbitals” (RNBOs) that can accurately describe the localized bond shifts of a reactive chemical process. Unlike conventional NBOs, the RNBOs bear no fixed relationship to a particular Lewis-structural bonding pattern...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2019-02, Vol.15 (2), p.916-921 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 921 |
---|---|
container_issue | 2 |
container_start_page | 916 |
container_title | Journal of chemical theory and computation |
container_volume | 15 |
creator | Glendening, E. D Weinhold, F |
description | We describe a practical algorithm for calculating NBO-based “resonance natural bond orbitals” (RNBOs) that can accurately describe the localized bond shifts of a reactive chemical process. Unlike conventional NBOs, the RNBOs bear no fixed relationship to a particular Lewis-structural bonding pattern but derive instead from the natural resonance theory (NRT)-based manifold of all bonding patterns that contribute significantly to resonance mixing (and associated multichannel reactivity) at a chosen point of the potential energy surface. The RNBOs typically retain familiar localized Lewis-structural character for stable near-equilibrium species, yet they freely adopt multicenter character as required to satisfy Pople’s prerequisite that no allowed computational basis set should be inherently biased toward a particular nuclear arrangement or bonding pattern. A simple numerical application to intramolecular Claisen rearrangement demonstrates the computational and conceptual advantages of describing reactive bond-shifts with RNBOs rather than other conventional NBO- or MO-based expansion sets. |
doi_str_mv | 10.1021/acs.jctc.8b00948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2164550150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164550150</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-80c61bd36e4ca0da010013f9454dce03b68597732867934dc83529bf7a68c5433</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoNYbK3eeyUBb7xw15PPTbzTpWqhtFI_bkMmc0azzEzWZEbQ_nmz7raC4FVODs_zJvAS8oTBkgFnL30oy02YwtI0AFaae-SEKWkXVnN9_25m5pg8LGUDIITk4gE5FqAZlwJOyM01ljT6MSC99NOcfU_fpLGlV7mJk-_LK3rWdTFEHCf6EYfYp-D7-Av_ErRLma7TsJ2nOH6lvspfYpl31O5-jT5M8QfS9beqV5l-yClgKVgekaOuBuDjw3lKPr89-7R-v7i4ene-fn2x8ELLaWEgaNa0QqMMHloPDICJzkol24AgGm2UXa0EN3plRd0ZobhtupXXJigpxCl5vs_d5vR9xjK5IZaAfe9HTHNxnGmpFDAFFX32D7pJcx7r7xznYK0xRvFKwZ4KOZWSsXPbHAeffzoGbleMq8W4XTHuUExVnh6C52bA9k64baICL_bAH_X20f_m_QZnE5nC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2209988852</pqid></control><display><type>article</type><title>Resonance Natural Bond Orbitals: Efficient Semilocalized Orbitals for Computing and Visualizing Reactive Chemical Processes</title><source>ACS Publications</source><creator>Glendening, E. D ; Weinhold, F</creator><creatorcontrib>Glendening, E. D ; Weinhold, F</creatorcontrib><description>We describe a practical algorithm for calculating NBO-based “resonance natural bond orbitals” (RNBOs) that can accurately describe the localized bond shifts of a reactive chemical process. Unlike conventional NBOs, the RNBOs bear no fixed relationship to a particular Lewis-structural bonding pattern but derive instead from the natural resonance theory (NRT)-based manifold of all bonding patterns that contribute significantly to resonance mixing (and associated multichannel reactivity) at a chosen point of the potential energy surface. The RNBOs typically retain familiar localized Lewis-structural character for stable near-equilibrium species, yet they freely adopt multicenter character as required to satisfy Pople’s prerequisite that no allowed computational basis set should be inherently biased toward a particular nuclear arrangement or bonding pattern. A simple numerical application to intramolecular Claisen rearrangement demonstrates the computational and conceptual advantages of describing reactive bond-shifts with RNBOs rather than other conventional NBO- or MO-based expansion sets.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.8b00948</identifier><identifier>PMID: 30612430</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Chemical reactions ; Computation ; Orbitals ; Organic chemistry ; Potential energy</subject><ispartof>Journal of chemical theory and computation, 2019-02, Vol.15 (2), p.916-921</ispartof><rights>Copyright American Chemical Society Feb 12, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-80c61bd36e4ca0da010013f9454dce03b68597732867934dc83529bf7a68c5433</citedby><cites>FETCH-LOGICAL-a364t-80c61bd36e4ca0da010013f9454dce03b68597732867934dc83529bf7a68c5433</cites><orcidid>0000-0002-9580-054X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.8b00948$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.8b00948$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30612430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glendening, E. D</creatorcontrib><creatorcontrib>Weinhold, F</creatorcontrib><title>Resonance Natural Bond Orbitals: Efficient Semilocalized Orbitals for Computing and Visualizing Reactive Chemical Processes</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We describe a practical algorithm for calculating NBO-based “resonance natural bond orbitals” (RNBOs) that can accurately describe the localized bond shifts of a reactive chemical process. Unlike conventional NBOs, the RNBOs bear no fixed relationship to a particular Lewis-structural bonding pattern but derive instead from the natural resonance theory (NRT)-based manifold of all bonding patterns that contribute significantly to resonance mixing (and associated multichannel reactivity) at a chosen point of the potential energy surface. The RNBOs typically retain familiar localized Lewis-structural character for stable near-equilibrium species, yet they freely adopt multicenter character as required to satisfy Pople’s prerequisite that no allowed computational basis set should be inherently biased toward a particular nuclear arrangement or bonding pattern. A simple numerical application to intramolecular Claisen rearrangement demonstrates the computational and conceptual advantages of describing reactive bond-shifts with RNBOs rather than other conventional NBO- or MO-based expansion sets.</description><subject>Algorithms</subject><subject>Chemical reactions</subject><subject>Computation</subject><subject>Orbitals</subject><subject>Organic chemistry</subject><subject>Potential energy</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rFDEUhoNYbK3eeyUBb7xw15PPTbzTpWqhtFI_bkMmc0azzEzWZEbQ_nmz7raC4FVODs_zJvAS8oTBkgFnL30oy02YwtI0AFaae-SEKWkXVnN9_25m5pg8LGUDIITk4gE5FqAZlwJOyM01ljT6MSC99NOcfU_fpLGlV7mJk-_LK3rWdTFEHCf6EYfYp-D7-Av_ErRLma7TsJ2nOH6lvspfYpl31O5-jT5M8QfS9beqV5l-yClgKVgekaOuBuDjw3lKPr89-7R-v7i4ene-fn2x8ELLaWEgaNa0QqMMHloPDICJzkol24AgGm2UXa0EN3plRd0ZobhtupXXJigpxCl5vs_d5vR9xjK5IZaAfe9HTHNxnGmpFDAFFX32D7pJcx7r7xznYK0xRvFKwZ4KOZWSsXPbHAeffzoGbleMq8W4XTHuUExVnh6C52bA9k64baICL_bAH_X20f_m_QZnE5nC</recordid><startdate>20190212</startdate><enddate>20190212</enddate><creator>Glendening, E. D</creator><creator>Weinhold, F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9580-054X</orcidid></search><sort><creationdate>20190212</creationdate><title>Resonance Natural Bond Orbitals: Efficient Semilocalized Orbitals for Computing and Visualizing Reactive Chemical Processes</title><author>Glendening, E. D ; Weinhold, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-80c61bd36e4ca0da010013f9454dce03b68597732867934dc83529bf7a68c5433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Chemical reactions</topic><topic>Computation</topic><topic>Orbitals</topic><topic>Organic chemistry</topic><topic>Potential energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glendening, E. D</creatorcontrib><creatorcontrib>Weinhold, F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glendening, E. D</au><au>Weinhold, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance Natural Bond Orbitals: Efficient Semilocalized Orbitals for Computing and Visualizing Reactive Chemical Processes</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2019-02-12</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>916</spage><epage>921</epage><pages>916-921</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We describe a practical algorithm for calculating NBO-based “resonance natural bond orbitals” (RNBOs) that can accurately describe the localized bond shifts of a reactive chemical process. Unlike conventional NBOs, the RNBOs bear no fixed relationship to a particular Lewis-structural bonding pattern but derive instead from the natural resonance theory (NRT)-based manifold of all bonding patterns that contribute significantly to resonance mixing (and associated multichannel reactivity) at a chosen point of the potential energy surface. The RNBOs typically retain familiar localized Lewis-structural character for stable near-equilibrium species, yet they freely adopt multicenter character as required to satisfy Pople’s prerequisite that no allowed computational basis set should be inherently biased toward a particular nuclear arrangement or bonding pattern. A simple numerical application to intramolecular Claisen rearrangement demonstrates the computational and conceptual advantages of describing reactive bond-shifts with RNBOs rather than other conventional NBO- or MO-based expansion sets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30612430</pmid><doi>10.1021/acs.jctc.8b00948</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9580-054X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2019-02, Vol.15 (2), p.916-921 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2164550150 |
source | ACS Publications |
subjects | Algorithms Chemical reactions Computation Orbitals Organic chemistry Potential energy |
title | Resonance Natural Bond Orbitals: Efficient Semilocalized Orbitals for Computing and Visualizing Reactive Chemical Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A34%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%20Natural%20Bond%20Orbitals:%20Efficient%20Semilocalized%20Orbitals%20for%20Computing%20and%20Visualizing%20Reactive%20Chemical%20Processes&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Glendening,%20E.%20D&rft.date=2019-02-12&rft.volume=15&rft.issue=2&rft.spage=916&rft.epage=921&rft.pages=916-921&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.8b00948&rft_dat=%3Cproquest_cross%3E2164550150%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2209988852&rft_id=info:pmid/30612430&rfr_iscdi=true |