A Novel In Vitro Model of Blast Traumatic Brain Injury

Traumatic brain injury is a leading cause of death and disability in military and civilian populations. Blast traumatic brain injury results from the detonation of explosive devices, however, the mechanisms that underlie the brain damage resulting from blast overpressure exposure are not entirely un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Visualized Experiments 2018-12 (142)
Hauptverfasser: Campos-Pires, Rita, Yonis, Amina, Macdonald, Warren, Harris, Katie, Edge, Christopher J., Mahoney, Peter F., Dickinson, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 142
container_start_page
container_title Journal of Visualized Experiments
container_volume
creator Campos-Pires, Rita
Yonis, Amina
Macdonald, Warren
Harris, Katie
Edge, Christopher J.
Mahoney, Peter F.
Dickinson, Robert
description Traumatic brain injury is a leading cause of death and disability in military and civilian populations. Blast traumatic brain injury results from the detonation of explosive devices, however, the mechanisms that underlie the brain damage resulting from blast overpressure exposure are not entirely understood and are believed to be unique to this type of brain injury. Preclinical models are crucial tools that contribute to better understand blast-induced brain injury. A novel in vitro blast TBI model was developed using an open-ended shock tube to simulate real-life open-field blast waves modelled by the Friedlander waveform. C57BL/6N mouse organotypic hippocampal slice cultures were exposed to single shock waves and the development of injury was characterized up to 72 h using propidium iodide, a well-established fluorescent marker of cell damage that only penetrates cells with compromised cellular membranes. Propidium iodide fluorescence was significantly higher in the slices exposed to a blast wave when compared with sham slices throughout the duration of the protocol. The brain tissue injury is very reproducible and proportional to the peak overpressure of the shock wave applied.
doi_str_mv 10.3791/58400
format Article
fullrecord <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_proquest_miscellaneous_2164547000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2164547000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d3e562d65663d6c83c9104698319bba3c95f648e0c08809f1240df56bba45073</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMottb-AQ-Si-BldbL52OyxLX4Uql6KeAtpNgu77G5qslvovzfaKp5mXuaZgXkQmhK4o1lO7rlkACdoTHIGCcjs4_RfP0IXIdQAIgUuz9GIgiCMSTlGYoZf3c42eNnh96r3Dr-4IkZX4nmjQ4_XXg-t7iuD515XXeTqwe8v0Vmpm2CnxzpB68eH9eI5Wb09LRezVWJomvVJQS0XaSG4ELQQRlKTE2Ail5Tkm42OkZeCSQsGpIS8JCmDouQizhiHjE7Q7eHs1rvPwYZetVUwtml0Z90QVEoE4ywDgIjeHFDjXQjelmrrq1b7vSKgvg2pH0ORuz6eHDatLf6oXyURuDoAdfSiajf4Ln543P4CcK9lWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164547000</pqid></control><display><type>article</type><title>A Novel In Vitro Model of Blast Traumatic Brain Injury</title><source>Journal of Visualized Experiments : JoVE</source><creator>Campos-Pires, Rita ; Yonis, Amina ; Macdonald, Warren ; Harris, Katie ; Edge, Christopher J. ; Mahoney, Peter F. ; Dickinson, Robert</creator><creatorcontrib>Campos-Pires, Rita ; Yonis, Amina ; Macdonald, Warren ; Harris, Katie ; Edge, Christopher J. ; Mahoney, Peter F. ; Dickinson, Robert</creatorcontrib><description>Traumatic brain injury is a leading cause of death and disability in military and civilian populations. Blast traumatic brain injury results from the detonation of explosive devices, however, the mechanisms that underlie the brain damage resulting from blast overpressure exposure are not entirely understood and are believed to be unique to this type of brain injury. Preclinical models are crucial tools that contribute to better understand blast-induced brain injury. A novel in vitro blast TBI model was developed using an open-ended shock tube to simulate real-life open-field blast waves modelled by the Friedlander waveform. C57BL/6N mouse organotypic hippocampal slice cultures were exposed to single shock waves and the development of injury was characterized up to 72 h using propidium iodide, a well-established fluorescent marker of cell damage that only penetrates cells with compromised cellular membranes. Propidium iodide fluorescence was significantly higher in the slices exposed to a blast wave when compared with sham slices throughout the duration of the protocol. The brain tissue injury is very reproducible and proportional to the peak overpressure of the shock wave applied.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/58400</identifier><identifier>PMID: 30614488</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Animals ; Brain Injuries, Traumatic - pathology ; Brain Injuries, Traumatic - therapy ; Disease Models, Animal ; Mice ; Neuroscience ; Rats, Sprague-Dawley</subject><ispartof>Journal of Visualized Experiments, 2018-12 (142)</ispartof><rights>Copyright © 2018, Journal of Visualized Experiments</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d3e562d65663d6c83c9104698319bba3c95f648e0c08809f1240df56bba45073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.jove.com/files/email_thumbs/58400.png</thumbnail><link.rule.ids>314,776,780,3829,27903,27904</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/58400$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30614488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campos-Pires, Rita</creatorcontrib><creatorcontrib>Yonis, Amina</creatorcontrib><creatorcontrib>Macdonald, Warren</creatorcontrib><creatorcontrib>Harris, Katie</creatorcontrib><creatorcontrib>Edge, Christopher J.</creatorcontrib><creatorcontrib>Mahoney, Peter F.</creatorcontrib><creatorcontrib>Dickinson, Robert</creatorcontrib><title>A Novel In Vitro Model of Blast Traumatic Brain Injury</title><title>Journal of Visualized Experiments</title><addtitle>J Vis Exp</addtitle><description>Traumatic brain injury is a leading cause of death and disability in military and civilian populations. Blast traumatic brain injury results from the detonation of explosive devices, however, the mechanisms that underlie the brain damage resulting from blast overpressure exposure are not entirely understood and are believed to be unique to this type of brain injury. Preclinical models are crucial tools that contribute to better understand blast-induced brain injury. A novel in vitro blast TBI model was developed using an open-ended shock tube to simulate real-life open-field blast waves modelled by the Friedlander waveform. C57BL/6N mouse organotypic hippocampal slice cultures were exposed to single shock waves and the development of injury was characterized up to 72 h using propidium iodide, a well-established fluorescent marker of cell damage that only penetrates cells with compromised cellular membranes. Propidium iodide fluorescence was significantly higher in the slices exposed to a blast wave when compared with sham slices throughout the duration of the protocol. The brain tissue injury is very reproducible and proportional to the peak overpressure of the shock wave applied.</description><subject>Animals</subject><subject>Brain Injuries, Traumatic - pathology</subject><subject>Brain Injuries, Traumatic - therapy</subject><subject>Disease Models, Animal</subject><subject>Mice</subject><subject>Neuroscience</subject><subject>Rats, Sprague-Dawley</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1LAzEQhoMottb-AQ-Si-BldbL52OyxLX4Uql6KeAtpNgu77G5qslvovzfaKp5mXuaZgXkQmhK4o1lO7rlkACdoTHIGCcjs4_RfP0IXIdQAIgUuz9GIgiCMSTlGYoZf3c42eNnh96r3Dr-4IkZX4nmjQ4_XXg-t7iuD515XXeTqwe8v0Vmpm2CnxzpB68eH9eI5Wb09LRezVWJomvVJQS0XaSG4ELQQRlKTE2Ail5Tkm42OkZeCSQsGpIS8JCmDouQizhiHjE7Q7eHs1rvPwYZetVUwtml0Z90QVEoE4ywDgIjeHFDjXQjelmrrq1b7vSKgvg2pH0ORuz6eHDatLf6oXyURuDoAdfSiajf4Ln543P4CcK9lWA</recordid><startdate>20181221</startdate><enddate>20181221</enddate><creator>Campos-Pires, Rita</creator><creator>Yonis, Amina</creator><creator>Macdonald, Warren</creator><creator>Harris, Katie</creator><creator>Edge, Christopher J.</creator><creator>Mahoney, Peter F.</creator><creator>Dickinson, Robert</creator><general>MyJove Corporation</general><scope>BVVXV</scope><scope>DRUMS</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20181221</creationdate><title>A Novel In Vitro Model of Blast Traumatic Brain Injury</title><author>Campos-Pires, Rita ; Yonis, Amina ; Macdonald, Warren ; Harris, Katie ; Edge, Christopher J. ; Mahoney, Peter F. ; Dickinson, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d3e562d65663d6c83c9104698319bba3c95f648e0c08809f1240df56bba45073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Brain Injuries, Traumatic - pathology</topic><topic>Brain Injuries, Traumatic - therapy</topic><topic>Disease Models, Animal</topic><topic>Mice</topic><topic>Neuroscience</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos-Pires, Rita</creatorcontrib><creatorcontrib>Yonis, Amina</creatorcontrib><creatorcontrib>Macdonald, Warren</creatorcontrib><creatorcontrib>Harris, Katie</creatorcontrib><creatorcontrib>Edge, Christopher J.</creatorcontrib><creatorcontrib>Mahoney, Peter F.</creatorcontrib><creatorcontrib>Dickinson, Robert</creatorcontrib><collection>JoVE Journal: Neuroscience</collection><collection>JoVE Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Visualized Experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Campos-Pires, Rita</au><au>Yonis, Amina</au><au>Macdonald, Warren</au><au>Harris, Katie</au><au>Edge, Christopher J.</au><au>Mahoney, Peter F.</au><au>Dickinson, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel In Vitro Model of Blast Traumatic Brain Injury</atitle><jtitle>Journal of Visualized Experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2018-12-21</date><risdate>2018</risdate><issue>142</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Traumatic brain injury is a leading cause of death and disability in military and civilian populations. Blast traumatic brain injury results from the detonation of explosive devices, however, the mechanisms that underlie the brain damage resulting from blast overpressure exposure are not entirely understood and are believed to be unique to this type of brain injury. Preclinical models are crucial tools that contribute to better understand blast-induced brain injury. A novel in vitro blast TBI model was developed using an open-ended shock tube to simulate real-life open-field blast waves modelled by the Friedlander waveform. C57BL/6N mouse organotypic hippocampal slice cultures were exposed to single shock waves and the development of injury was characterized up to 72 h using propidium iodide, a well-established fluorescent marker of cell damage that only penetrates cells with compromised cellular membranes. Propidium iodide fluorescence was significantly higher in the slices exposed to a blast wave when compared with sham slices throughout the duration of the protocol. The brain tissue injury is very reproducible and proportional to the peak overpressure of the shock wave applied.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>30614488</pmid><doi>10.3791/58400</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1940-087X
ispartof Journal of Visualized Experiments, 2018-12 (142)
issn 1940-087X
1940-087X
language eng
recordid cdi_proquest_miscellaneous_2164547000
source Journal of Visualized Experiments : JoVE
subjects Animals
Brain Injuries, Traumatic - pathology
Brain Injuries, Traumatic - therapy
Disease Models, Animal
Mice
Neuroscience
Rats, Sprague-Dawley
title A Novel In Vitro Model of Blast Traumatic Brain Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20In%20Vitro%20Model%20of%20Blast%20Traumatic%20Brain%20Injury&rft.jtitle=Journal%20of%20Visualized%20Experiments&rft.au=Campos-Pires,%20Rita&rft.date=2018-12-21&rft.issue=142&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/58400&rft_dat=%3Cproquest_223%3E2164547000%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164547000&rft_id=info:pmid/30614488&rfr_iscdi=true