Machine learning in suicide science: Applications and ethics
For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential...
Gespeichert in:
Veröffentlicht in: | Behavioral sciences & the law 2019-05, Vol.37 (3), p.214-222 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 222 |
---|---|
container_issue | 3 |
container_start_page | 214 |
container_title | Behavioral sciences & the law |
container_volume | 37 |
creator | Linthicum, Kathryn P. Schafer, Katherine Musacchio Ribeiro, Jessica D. |
description | For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential application to open questions in suicide research. Although only a few studies have implemented machine learning for suicide prediction, results to date indicate considerable improvement in accuracy and positive predictive value. Potential barriers to algorithm integration into clinical practice are discussed, as well as attendant ethical issues. Overall, machine learning approaches hold promise for accurate, scalable, and effective suicide risk detection; however, many critical questions and issues remain unexplored. |
doi_str_mv | 10.1002/bsl.2392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2164101962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233810409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3492-e8c71924f7adab507d2bb70b4ca729d2a56cc378749e12a6d1ffee7c431371923</originalsourceid><addsrcrecordid>eNp1kF9LwzAUR4Mobk7BTyAFX3zpvEnaphFftuE_mPigPoc0vXUZXVqbFdm3t3VTQfDpvpx7-HEIOaUwpgDsMvPlmHHJ9siQgpQhCJnukyEIHodc8mRAjrxfAkCcxvKQDDgkICmwIbl-1GZhHQYl6sZZ9xZYF_jWGptj4I1FZ_AqmNR1aY1e28r5QLs8wPXCGn9MDgpdejzZ3RF5vb15md2H86e7h9lkHhoeSRZiagSVLCqEznUWg8hZlgnIIqMFkznTcWIMF6mIJFKmk5wWBaIwEae8f-QjcrH11k313qJfq5X1BstSO6xarxhNIgpUJj16_gddVm3junWKMc5TChHIX6FpKu8bLFTd2JVuNoqC6ouqrqjqi3bo2U7YZivMf8DvhB0QboEPW-LmX5GaPs-_hJ9sdn0i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233810409</pqid></control><display><type>article</type><title>Machine learning in suicide science: Applications and ethics</title><source>Wiley Online Library Journals Frontfile Complete</source><source>HeinOnline Law Journal Library</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><creator>Linthicum, Kathryn P. ; Schafer, Katherine Musacchio ; Ribeiro, Jessica D.</creator><creatorcontrib>Linthicum, Kathryn P. ; Schafer, Katherine Musacchio ; Ribeiro, Jessica D.</creatorcontrib><description>For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential application to open questions in suicide research. Although only a few studies have implemented machine learning for suicide prediction, results to date indicate considerable improvement in accuracy and positive predictive value. Potential barriers to algorithm integration into clinical practice are discussed, as well as attendant ethical issues. Overall, machine learning approaches hold promise for accurate, scalable, and effective suicide risk detection; however, many critical questions and issues remain unexplored.</description><identifier>ISSN: 0735-3936</identifier><identifier>EISSN: 1099-0798</identifier><identifier>DOI: 10.1002/bsl.2392</identifier><identifier>PMID: 30609102</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial intelligence ; Clinical medicine ; Ethical dilemmas ; Ethics ; Machine learning ; Predictions ; Questions ; Suicide ; Suicides & suicide attempts</subject><ispartof>Behavioral sciences & the law, 2019-05, Vol.37 (3), p.214-222</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3492-e8c71924f7adab507d2bb70b4ca729d2a56cc378749e12a6d1ffee7c431371923</citedby><cites>FETCH-LOGICAL-c3492-e8c71924f7adab507d2bb70b4ca729d2a56cc378749e12a6d1ffee7c431371923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbsl.2392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbsl.2392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,30980,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30609102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linthicum, Kathryn P.</creatorcontrib><creatorcontrib>Schafer, Katherine Musacchio</creatorcontrib><creatorcontrib>Ribeiro, Jessica D.</creatorcontrib><title>Machine learning in suicide science: Applications and ethics</title><title>Behavioral sciences & the law</title><addtitle>Behav Sci Law</addtitle><description>For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential application to open questions in suicide research. Although only a few studies have implemented machine learning for suicide prediction, results to date indicate considerable improvement in accuracy and positive predictive value. Potential barriers to algorithm integration into clinical practice are discussed, as well as attendant ethical issues. Overall, machine learning approaches hold promise for accurate, scalable, and effective suicide risk detection; however, many critical questions and issues remain unexplored.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clinical medicine</subject><subject>Ethical dilemmas</subject><subject>Ethics</subject><subject>Machine learning</subject><subject>Predictions</subject><subject>Questions</subject><subject>Suicide</subject><subject>Suicides & suicide attempts</subject><issn>0735-3936</issn><issn>1099-0798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kF9LwzAUR4Mobk7BTyAFX3zpvEnaphFftuE_mPigPoc0vXUZXVqbFdm3t3VTQfDpvpx7-HEIOaUwpgDsMvPlmHHJ9siQgpQhCJnukyEIHodc8mRAjrxfAkCcxvKQDDgkICmwIbl-1GZhHQYl6sZZ9xZYF_jWGptj4I1FZ_AqmNR1aY1e28r5QLs8wPXCGn9MDgpdejzZ3RF5vb15md2H86e7h9lkHhoeSRZiagSVLCqEznUWg8hZlgnIIqMFkznTcWIMF6mIJFKmk5wWBaIwEae8f-QjcrH11k313qJfq5X1BstSO6xarxhNIgpUJj16_gddVm3junWKMc5TChHIX6FpKu8bLFTd2JVuNoqC6ouqrqjqi3bo2U7YZivMf8DvhB0QboEPW-LmX5GaPs-_hJ9sdn0i</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Linthicum, Kathryn P.</creator><creator>Schafer, Katherine Musacchio</creator><creator>Ribeiro, Jessica D.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>K7.</scope><scope>7X8</scope></search><sort><creationdate>201905</creationdate><title>Machine learning in suicide science: Applications and ethics</title><author>Linthicum, Kathryn P. ; Schafer, Katherine Musacchio ; Ribeiro, Jessica D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3492-e8c71924f7adab507d2bb70b4ca729d2a56cc378749e12a6d1ffee7c431371923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clinical medicine</topic><topic>Ethical dilemmas</topic><topic>Ethics</topic><topic>Machine learning</topic><topic>Predictions</topic><topic>Questions</topic><topic>Suicide</topic><topic>Suicides & suicide attempts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linthicum, Kathryn P.</creatorcontrib><creatorcontrib>Schafer, Katherine Musacchio</creatorcontrib><creatorcontrib>Ribeiro, Jessica D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavioral sciences & the law</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linthicum, Kathryn P.</au><au>Schafer, Katherine Musacchio</au><au>Ribeiro, Jessica D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in suicide science: Applications and ethics</atitle><jtitle>Behavioral sciences & the law</jtitle><addtitle>Behav Sci Law</addtitle><date>2019-05</date><risdate>2019</risdate><volume>37</volume><issue>3</issue><spage>214</spage><epage>222</epage><pages>214-222</pages><issn>0735-3936</issn><eissn>1099-0798</eissn><abstract>For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential application to open questions in suicide research. Although only a few studies have implemented machine learning for suicide prediction, results to date indicate considerable improvement in accuracy and positive predictive value. Potential barriers to algorithm integration into clinical practice are discussed, as well as attendant ethical issues. Overall, machine learning approaches hold promise for accurate, scalable, and effective suicide risk detection; however, many critical questions and issues remain unexplored.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30609102</pmid><doi>10.1002/bsl.2392</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-3936 |
ispartof | Behavioral sciences & the law, 2019-05, Vol.37 (3), p.214-222 |
issn | 0735-3936 1099-0798 |
language | eng |
recordid | cdi_proquest_miscellaneous_2164101962 |
source | Wiley Online Library Journals Frontfile Complete; HeinOnline Law Journal Library; Applied Social Sciences Index & Abstracts (ASSIA) |
subjects | Algorithms Artificial intelligence Clinical medicine Ethical dilemmas Ethics Machine learning Predictions Questions Suicide Suicides & suicide attempts |
title | Machine learning in suicide science: Applications and ethics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20suicide%20science:%20Applications%20and%20ethics&rft.jtitle=Behavioral%20sciences%20&%20the%20law&rft.au=Linthicum,%20Kathryn%20P.&rft.date=2019-05&rft.volume=37&rft.issue=3&rft.spage=214&rft.epage=222&rft.pages=214-222&rft.issn=0735-3936&rft.eissn=1099-0798&rft_id=info:doi/10.1002/bsl.2392&rft_dat=%3Cproquest_cross%3E2233810409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233810409&rft_id=info:pmid/30609102&rfr_iscdi=true |