Machine learning in suicide science: Applications and ethics

For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavioral sciences & the law 2019-05, Vol.37 (3), p.214-222
Hauptverfasser: Linthicum, Kathryn P., Schafer, Katherine Musacchio, Ribeiro, Jessica D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 3
container_start_page 214
container_title Behavioral sciences & the law
container_volume 37
creator Linthicum, Kathryn P.
Schafer, Katherine Musacchio
Ribeiro, Jessica D.
description For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential application to open questions in suicide research. Although only a few studies have implemented machine learning for suicide prediction, results to date indicate considerable improvement in accuracy and positive predictive value. Potential barriers to algorithm integration into clinical practice are discussed, as well as attendant ethical issues. Overall, machine learning approaches hold promise for accurate, scalable, and effective suicide risk detection; however, many critical questions and issues remain unexplored.
doi_str_mv 10.1002/bsl.2392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2164101962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2233810409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3492-e8c71924f7adab507d2bb70b4ca729d2a56cc378749e12a6d1ffee7c431371923</originalsourceid><addsrcrecordid>eNp1kF9LwzAUR4Mobk7BTyAFX3zpvEnaphFftuE_mPigPoc0vXUZXVqbFdm3t3VTQfDpvpx7-HEIOaUwpgDsMvPlmHHJ9siQgpQhCJnukyEIHodc8mRAjrxfAkCcxvKQDDgkICmwIbl-1GZhHQYl6sZZ9xZYF_jWGptj4I1FZ_AqmNR1aY1e28r5QLs8wPXCGn9MDgpdejzZ3RF5vb15md2H86e7h9lkHhoeSRZiagSVLCqEznUWg8hZlgnIIqMFkznTcWIMF6mIJFKmk5wWBaIwEae8f-QjcrH11k313qJfq5X1BstSO6xarxhNIgpUJj16_gddVm3junWKMc5TChHIX6FpKu8bLFTd2JVuNoqC6ouqrqjqi3bo2U7YZivMf8DvhB0QboEPW-LmX5GaPs-_hJ9sdn0i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2233810409</pqid></control><display><type>article</type><title>Machine learning in suicide science: Applications and ethics</title><source>Wiley Online Library Journals Frontfile Complete</source><source>HeinOnline Law Journal Library</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Linthicum, Kathryn P. ; Schafer, Katherine Musacchio ; Ribeiro, Jessica D.</creator><creatorcontrib>Linthicum, Kathryn P. ; Schafer, Katherine Musacchio ; Ribeiro, Jessica D.</creatorcontrib><description>For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential application to open questions in suicide research. Although only a few studies have implemented machine learning for suicide prediction, results to date indicate considerable improvement in accuracy and positive predictive value. Potential barriers to algorithm integration into clinical practice are discussed, as well as attendant ethical issues. Overall, machine learning approaches hold promise for accurate, scalable, and effective suicide risk detection; however, many critical questions and issues remain unexplored.</description><identifier>ISSN: 0735-3936</identifier><identifier>EISSN: 1099-0798</identifier><identifier>DOI: 10.1002/bsl.2392</identifier><identifier>PMID: 30609102</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial intelligence ; Clinical medicine ; Ethical dilemmas ; Ethics ; Machine learning ; Predictions ; Questions ; Suicide ; Suicides &amp; suicide attempts</subject><ispartof>Behavioral sciences &amp; the law, 2019-05, Vol.37 (3), p.214-222</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3492-e8c71924f7adab507d2bb70b4ca729d2a56cc378749e12a6d1ffee7c431371923</citedby><cites>FETCH-LOGICAL-c3492-e8c71924f7adab507d2bb70b4ca729d2a56cc378749e12a6d1ffee7c431371923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbsl.2392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbsl.2392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,30980,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30609102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linthicum, Kathryn P.</creatorcontrib><creatorcontrib>Schafer, Katherine Musacchio</creatorcontrib><creatorcontrib>Ribeiro, Jessica D.</creatorcontrib><title>Machine learning in suicide science: Applications and ethics</title><title>Behavioral sciences &amp; the law</title><addtitle>Behav Sci Law</addtitle><description>For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential application to open questions in suicide research. Although only a few studies have implemented machine learning for suicide prediction, results to date indicate considerable improvement in accuracy and positive predictive value. Potential barriers to algorithm integration into clinical practice are discussed, as well as attendant ethical issues. Overall, machine learning approaches hold promise for accurate, scalable, and effective suicide risk detection; however, many critical questions and issues remain unexplored.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clinical medicine</subject><subject>Ethical dilemmas</subject><subject>Ethics</subject><subject>Machine learning</subject><subject>Predictions</subject><subject>Questions</subject><subject>Suicide</subject><subject>Suicides &amp; suicide attempts</subject><issn>0735-3936</issn><issn>1099-0798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kF9LwzAUR4Mobk7BTyAFX3zpvEnaphFftuE_mPigPoc0vXUZXVqbFdm3t3VTQfDpvpx7-HEIOaUwpgDsMvPlmHHJ9siQgpQhCJnukyEIHodc8mRAjrxfAkCcxvKQDDgkICmwIbl-1GZhHQYl6sZZ9xZYF_jWGptj4I1FZ_AqmNR1aY1e28r5QLs8wPXCGn9MDgpdejzZ3RF5vb15md2H86e7h9lkHhoeSRZiagSVLCqEznUWg8hZlgnIIqMFkznTcWIMF6mIJFKmk5wWBaIwEae8f-QjcrH11k313qJfq5X1BstSO6xarxhNIgpUJj16_gddVm3junWKMc5TChHIX6FpKu8bLFTd2JVuNoqC6ouqrqjqi3bo2U7YZivMf8DvhB0QboEPW-LmX5GaPs-_hJ9sdn0i</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Linthicum, Kathryn P.</creator><creator>Schafer, Katherine Musacchio</creator><creator>Ribeiro, Jessica D.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>K7.</scope><scope>7X8</scope></search><sort><creationdate>201905</creationdate><title>Machine learning in suicide science: Applications and ethics</title><author>Linthicum, Kathryn P. ; Schafer, Katherine Musacchio ; Ribeiro, Jessica D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3492-e8c71924f7adab507d2bb70b4ca729d2a56cc378749e12a6d1ffee7c431371923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clinical medicine</topic><topic>Ethical dilemmas</topic><topic>Ethics</topic><topic>Machine learning</topic><topic>Predictions</topic><topic>Questions</topic><topic>Suicide</topic><topic>Suicides &amp; suicide attempts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linthicum, Kathryn P.</creatorcontrib><creatorcontrib>Schafer, Katherine Musacchio</creatorcontrib><creatorcontrib>Ribeiro, Jessica D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavioral sciences &amp; the law</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linthicum, Kathryn P.</au><au>Schafer, Katherine Musacchio</au><au>Ribeiro, Jessica D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning in suicide science: Applications and ethics</atitle><jtitle>Behavioral sciences &amp; the law</jtitle><addtitle>Behav Sci Law</addtitle><date>2019-05</date><risdate>2019</risdate><volume>37</volume><issue>3</issue><spage>214</spage><epage>222</epage><pages>214-222</pages><issn>0735-3936</issn><eissn>1099-0798</eissn><abstract>For decades, our ability to predict suicide has remained at near‐chance levels. Machine learning has recently emerged as a promising tool for advancing suicide science, particularly in the domain of suicide prediction. The present review provides an introduction to machine learning and its potential application to open questions in suicide research. Although only a few studies have implemented machine learning for suicide prediction, results to date indicate considerable improvement in accuracy and positive predictive value. Potential barriers to algorithm integration into clinical practice are discussed, as well as attendant ethical issues. Overall, machine learning approaches hold promise for accurate, scalable, and effective suicide risk detection; however, many critical questions and issues remain unexplored.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30609102</pmid><doi>10.1002/bsl.2392</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-3936
ispartof Behavioral sciences & the law, 2019-05, Vol.37 (3), p.214-222
issn 0735-3936
1099-0798
language eng
recordid cdi_proquest_miscellaneous_2164101962
source Wiley Online Library Journals Frontfile Complete; HeinOnline Law Journal Library; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Algorithms
Artificial intelligence
Clinical medicine
Ethical dilemmas
Ethics
Machine learning
Predictions
Questions
Suicide
Suicides & suicide attempts
title Machine learning in suicide science: Applications and ethics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20in%20suicide%20science:%20Applications%20and%20ethics&rft.jtitle=Behavioral%20sciences%20&%20the%20law&rft.au=Linthicum,%20Kathryn%20P.&rft.date=2019-05&rft.volume=37&rft.issue=3&rft.spage=214&rft.epage=222&rft.pages=214-222&rft.issn=0735-3936&rft.eissn=1099-0798&rft_id=info:doi/10.1002/bsl.2392&rft_dat=%3Cproquest_cross%3E2233810409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2233810409&rft_id=info:pmid/30609102&rfr_iscdi=true