Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation

The translatome can be defined as the sum of the RNA sequences that are translated into proteins in the cell by the ribosomal machinery. Until recently, it was generally assumed that the translatome was essentially restricted to evolutionary conserved proteins encoded by the set of annotated protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in genetics 2019-03, Vol.35 (3), p.186-198
Hauptverfasser: Ruiz-Orera, Jorge, Albà, M. Mar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 3
container_start_page 186
container_title Trends in genetics
container_volume 35
creator Ruiz-Orera, Jorge
Albà, M. Mar
description The translatome can be defined as the sum of the RNA sequences that are translated into proteins in the cell by the ribosomal machinery. Until recently, it was generally assumed that the translatome was essentially restricted to evolutionary conserved proteins encoded by the set of annotated protein-coding genes. However, it has become increasingly clear that it also includes small regulatory open reading frames (ORFs), functional micropeptides, de novo proteins, and the pervasive translation of likely nonfunctional proteins. Many of these ORFs have been discovered thanks to the development of ribosome profiling, a technique to sequence ribosome-protected RNA fragments. To fully capture the diversity of translated ORFs, we propose a comprehensive classification that includes the new types of translated ORFs in addition to standard proteins. Ribosome profiling sequencing techniques have provided evidence that many small ORFs are translated outside annotated coding sequences. The functional proteome includes long conserved proteins, alternative isoforms, small proteins hidden in long noncoding RNAs, and recently evolved de novo proteins. The translation of upstream small ORFs can regulate expression of the main coding sequence. The pervasive translation of the transcriptome generates abundant raw material for the formation of functional proteins de novo.
doi_str_mv 10.1016/j.tig.2018.12.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2164099802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168952518302221</els_id><sourcerecordid>2164099802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-47c167577001461ad45b6636db67173d3e8155f5ed239b8e5db0323b7b32add73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRb0A8f4ANshLNg1jO7ZTWCHES0JC4rFgZTnxtHKV2MVOKvH3pLSwZDWamXuvZg4hpwwKBkxdLIrezwsOrCoYLwDEDjkY59VkKrncJ4c5LwBAaiH3yL4ABapUcEA-3pINubW9j4HGGX3tbNvS5yUG-oLW-TCnd8l2mC_pS2wxU79ezIetwwZHb1exHdadTV_0MYS4-tkdk92ZbTOebOsReb-7fbt5mDw93z_eXD9NGiFFPyl1w5SWWgOwUjHrSlkrJZSrlWZaOIEVk3Im0XExrSuUrgbBRa1rwa1zWhyR803uMsXPAXNvOp8bbFsbMA7ZcKZKmE4r4KOUbaRNijknnJll8t14tmFg1hTNwowUzZqiYdyMFEfP2TZ-qDt0f45fhKPgaiPA8cmVx2Ry4zE06HzCpjcu-n_ivwGQ3IPW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2164099802</pqid></control><display><type>article</type><title>Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ruiz-Orera, Jorge ; Albà, M. Mar</creator><creatorcontrib>Ruiz-Orera, Jorge ; Albà, M. Mar</creatorcontrib><description>The translatome can be defined as the sum of the RNA sequences that are translated into proteins in the cell by the ribosomal machinery. Until recently, it was generally assumed that the translatome was essentially restricted to evolutionary conserved proteins encoded by the set of annotated protein-coding genes. However, it has become increasingly clear that it also includes small regulatory open reading frames (ORFs), functional micropeptides, de novo proteins, and the pervasive translation of likely nonfunctional proteins. Many of these ORFs have been discovered thanks to the development of ribosome profiling, a technique to sequence ribosome-protected RNA fragments. To fully capture the diversity of translated ORFs, we propose a comprehensive classification that includes the new types of translated ORFs in addition to standard proteins. Ribosome profiling sequencing techniques have provided evidence that many small ORFs are translated outside annotated coding sequences. The functional proteome includes long conserved proteins, alternative isoforms, small proteins hidden in long noncoding RNAs, and recently evolved de novo proteins. The translation of upstream small ORFs can regulate expression of the main coding sequence. The pervasive translation of the transcriptome generates abundant raw material for the formation of functional proteins de novo.</description><identifier>ISSN: 0168-9525</identifier><identifier>DOI: 10.1016/j.tig.2018.12.003</identifier><identifier>PMID: 30606460</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Computational Biology ; Conserved Sequence - genetics ; de novo protein ; Evolution, Molecular ; Gene Expression Regulation - genetics ; micropeptide ; open reading frame ; Open Reading Frames - genetics ; Protein Biosynthesis ; ribosome profiling ; Ribosomes - genetics ; RNA - genetics ; translatome</subject><ispartof>Trends in genetics, 2019-03, Vol.35 (3), p.186-198</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-47c167577001461ad45b6636db67173d3e8155f5ed239b8e5db0323b7b32add73</citedby><cites>FETCH-LOGICAL-c353t-47c167577001461ad45b6636db67173d3e8155f5ed239b8e5db0323b7b32add73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tig.2018.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30606460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Orera, Jorge</creatorcontrib><creatorcontrib>Albà, M. Mar</creatorcontrib><title>Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation</title><title>Trends in genetics</title><addtitle>Trends Genet</addtitle><description>The translatome can be defined as the sum of the RNA sequences that are translated into proteins in the cell by the ribosomal machinery. Until recently, it was generally assumed that the translatome was essentially restricted to evolutionary conserved proteins encoded by the set of annotated protein-coding genes. However, it has become increasingly clear that it also includes small regulatory open reading frames (ORFs), functional micropeptides, de novo proteins, and the pervasive translation of likely nonfunctional proteins. Many of these ORFs have been discovered thanks to the development of ribosome profiling, a technique to sequence ribosome-protected RNA fragments. To fully capture the diversity of translated ORFs, we propose a comprehensive classification that includes the new types of translated ORFs in addition to standard proteins. Ribosome profiling sequencing techniques have provided evidence that many small ORFs are translated outside annotated coding sequences. The functional proteome includes long conserved proteins, alternative isoforms, small proteins hidden in long noncoding RNAs, and recently evolved de novo proteins. The translation of upstream small ORFs can regulate expression of the main coding sequence. The pervasive translation of the transcriptome generates abundant raw material for the formation of functional proteins de novo.</description><subject>Computational Biology</subject><subject>Conserved Sequence - genetics</subject><subject>de novo protein</subject><subject>Evolution, Molecular</subject><subject>Gene Expression Regulation - genetics</subject><subject>micropeptide</subject><subject>open reading frame</subject><subject>Open Reading Frames - genetics</subject><subject>Protein Biosynthesis</subject><subject>ribosome profiling</subject><subject>Ribosomes - genetics</subject><subject>RNA - genetics</subject><subject>translatome</subject><issn>0168-9525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRb0A8f4ANshLNg1jO7ZTWCHES0JC4rFgZTnxtHKV2MVOKvH3pLSwZDWamXuvZg4hpwwKBkxdLIrezwsOrCoYLwDEDjkY59VkKrncJ4c5LwBAaiH3yL4ABapUcEA-3pINubW9j4HGGX3tbNvS5yUG-oLW-TCnd8l2mC_pS2wxU79ezIetwwZHb1exHdadTV_0MYS4-tkdk92ZbTOebOsReb-7fbt5mDw93z_eXD9NGiFFPyl1w5SWWgOwUjHrSlkrJZSrlWZaOIEVk3Im0XExrSuUrgbBRa1rwa1zWhyR803uMsXPAXNvOp8bbFsbMA7ZcKZKmE4r4KOUbaRNijknnJll8t14tmFg1hTNwowUzZqiYdyMFEfP2TZ-qDt0f45fhKPgaiPA8cmVx2Ry4zE06HzCpjcu-n_ivwGQ3IPW</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Ruiz-Orera, Jorge</creator><creator>Albà, M. Mar</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201903</creationdate><title>Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation</title><author>Ruiz-Orera, Jorge ; Albà, M. Mar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-47c167577001461ad45b6636db67173d3e8155f5ed239b8e5db0323b7b32add73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational Biology</topic><topic>Conserved Sequence - genetics</topic><topic>de novo protein</topic><topic>Evolution, Molecular</topic><topic>Gene Expression Regulation - genetics</topic><topic>micropeptide</topic><topic>open reading frame</topic><topic>Open Reading Frames - genetics</topic><topic>Protein Biosynthesis</topic><topic>ribosome profiling</topic><topic>Ribosomes - genetics</topic><topic>RNA - genetics</topic><topic>translatome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Orera, Jorge</creatorcontrib><creatorcontrib>Albà, M. Mar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Orera, Jorge</au><au>Albà, M. Mar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation</atitle><jtitle>Trends in genetics</jtitle><addtitle>Trends Genet</addtitle><date>2019-03</date><risdate>2019</risdate><volume>35</volume><issue>3</issue><spage>186</spage><epage>198</epage><pages>186-198</pages><issn>0168-9525</issn><abstract>The translatome can be defined as the sum of the RNA sequences that are translated into proteins in the cell by the ribosomal machinery. Until recently, it was generally assumed that the translatome was essentially restricted to evolutionary conserved proteins encoded by the set of annotated protein-coding genes. However, it has become increasingly clear that it also includes small regulatory open reading frames (ORFs), functional micropeptides, de novo proteins, and the pervasive translation of likely nonfunctional proteins. Many of these ORFs have been discovered thanks to the development of ribosome profiling, a technique to sequence ribosome-protected RNA fragments. To fully capture the diversity of translated ORFs, we propose a comprehensive classification that includes the new types of translated ORFs in addition to standard proteins. Ribosome profiling sequencing techniques have provided evidence that many small ORFs are translated outside annotated coding sequences. The functional proteome includes long conserved proteins, alternative isoforms, small proteins hidden in long noncoding RNAs, and recently evolved de novo proteins. The translation of upstream small ORFs can regulate expression of the main coding sequence. The pervasive translation of the transcriptome generates abundant raw material for the formation of functional proteins de novo.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30606460</pmid><doi>10.1016/j.tig.2018.12.003</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9525
ispartof Trends in genetics, 2019-03, Vol.35 (3), p.186-198
issn 0168-9525
language eng
recordid cdi_proquest_miscellaneous_2164099802
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Computational Biology
Conserved Sequence - genetics
de novo protein
Evolution, Molecular
Gene Expression Regulation - genetics
micropeptide
open reading frame
Open Reading Frames - genetics
Protein Biosynthesis
ribosome profiling
Ribosomes - genetics
RNA - genetics
translatome
title Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translation%20of%20Small%20Open%20Reading%20Frames:%20Roles%20in%20Regulation%20and%20Evolutionary%20Innovation&rft.jtitle=Trends%20in%20genetics&rft.au=Ruiz-Orera,%20Jorge&rft.date=2019-03&rft.volume=35&rft.issue=3&rft.spage=186&rft.epage=198&rft.pages=186-198&rft.issn=0168-9525&rft_id=info:doi/10.1016/j.tig.2018.12.003&rft_dat=%3Cproquest_cross%3E2164099802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2164099802&rft_id=info:pmid/30606460&rft_els_id=S0168952518302221&rfr_iscdi=true