An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics

In order to develop promising anode materials for lithium-ion batteries (LIBs), a unique nanocomposite abbreviated as G⊥FP@C-NA, in which a carbon-coated FeP nanorod array (FP@C-NA) is vertically grown on a conductive reduced graphene oxide (G) network, has been successfully prepared via a scalable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-01, Vol.11 (3), p.1304-1312
Hauptverfasser: Hou, Bao-Hua, Wang, Ying-Ying, Ning, Qiu-Li, Fan, Chao-Ying, Xi, Xiao-Tong, Yang, Xu, Wang, Jiawei, Zhang, Jing-Ping, Wang, Xinlong, Wu, Xing-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue 3
container_start_page 1304
container_title Nanoscale
container_volume 11
creator Hou, Bao-Hua
Wang, Ying-Ying
Ning, Qiu-Li
Fan, Chao-Ying
Xi, Xiao-Tong
Yang, Xu
Wang, Jiawei
Zhang, Jing-Ping
Wang, Xinlong
Wu, Xing-Long
description In order to develop promising anode materials for lithium-ion batteries (LIBs), a unique nanocomposite abbreviated as G⊥FP@C-NA, in which a carbon-coated FeP nanorod array (FP@C-NA) is vertically grown on a conductive reduced graphene oxide (G) network, has been successfully prepared via a scalable strategy. Benefiting from the distinctive structure, G⊥FP@C-NA exhibits much improved conductivity, structural stability and pseudocapacitance-boosted ultrafast electrochemical kinetics for Li storage. As a result, the G⊥FP@C-NA delivers a high Li-storage capacity (1106 mA h g-1 at 50 mA g-1), outstanding rate capability (565 mA h g-1 at 5000 mA g-1) and long-term cycling stability (1009 mA h g-1 at 500 mA g-1 after 500 cycles and 310 mA h g-1 at 2000 mA g-1 after 2000 cycles) when used as an anode material for LIBs. As expected, this kind of nanoarray structure is attractive and can also be extended to other electrode materials for various energy storage systems.
doi_str_mv 10.1039/c8nr08849g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2163008783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167859046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-89ec1181d5c2676aff218d1275d1c9b96e89e0532cef50c5128788caaed989603</originalsourceid><addsrcrecordid>eNpd0c1O3DAQB3CrApWvXngAZIkLqhSw48Sxe-pqVSjSChCi52jiTNjQrJ3aDmifhNetl68DJ4_ln2cs_wk55OyUM6HPjLKeKVXo-y9kN2cFy4So8q2PWhY7ZC-EB8akFlJ8JTuCSSaqstglzzNLz_Hm55xasA68hzV9RB97A8OwpvfePVnqbCpgXKLFFxaWiDH8oGDpNEQPIUIzIF30WZ9oAzGiX6dT1yJ96uOSjgGn1hkYwfQRrMGscS5EbCkOaKJ3ZomrzUj6t7eYhocDst3BEPDb27pP_pz_upv_zhbXF5fz2SIzudQxUxoN54q3ZdpXErou56rleVW23OhGS0yClSI32JXMlDxXlVIGAFutdPqEfXLy2nf07t-EIdarPhgcBrDoplDnXArG0iWR6PEn-uAmb9PrNqpSpWaFTOr7qzLeheCxq0ffr8Cva87qTVz1XF3dvsR1kfDRW8upWWH7Qd_zEf8Bf4uSYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167859046</pqid></control><display><type>article</type><title>An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hou, Bao-Hua ; Wang, Ying-Ying ; Ning, Qiu-Li ; Fan, Chao-Ying ; Xi, Xiao-Tong ; Yang, Xu ; Wang, Jiawei ; Zhang, Jing-Ping ; Wang, Xinlong ; Wu, Xing-Long</creator><creatorcontrib>Hou, Bao-Hua ; Wang, Ying-Ying ; Ning, Qiu-Li ; Fan, Chao-Ying ; Xi, Xiao-Tong ; Yang, Xu ; Wang, Jiawei ; Zhang, Jing-Ping ; Wang, Xinlong ; Wu, Xing-Long</creatorcontrib><description>In order to develop promising anode materials for lithium-ion batteries (LIBs), a unique nanocomposite abbreviated as G⊥FP@C-NA, in which a carbon-coated FeP nanorod array (FP@C-NA) is vertically grown on a conductive reduced graphene oxide (G) network, has been successfully prepared via a scalable strategy. Benefiting from the distinctive structure, G⊥FP@C-NA exhibits much improved conductivity, structural stability and pseudocapacitance-boosted ultrafast electrochemical kinetics for Li storage. As a result, the G⊥FP@C-NA delivers a high Li-storage capacity (1106 mA h g-1 at 50 mA g-1), outstanding rate capability (565 mA h g-1 at 5000 mA g-1) and long-term cycling stability (1009 mA h g-1 at 500 mA g-1 after 500 cycles and 310 mA h g-1 at 2000 mA g-1 after 2000 cycles) when used as an anode material for LIBs. As expected, this kind of nanoarray structure is attractive and can also be extended to other electrode materials for various energy storage systems.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr08849g</identifier><identifier>PMID: 30603754</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anodes ; Electrode materials ; Energy storage ; Graphene ; Lithium ; Lithium-ion batteries ; Nanocomposites ; Nanorods ; Nanosheets ; Rechargeable batteries ; Storage capacity ; Storage systems ; Structural stability</subject><ispartof>Nanoscale, 2019-01, Vol.11 (3), p.1304-1312</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-89ec1181d5c2676aff218d1275d1c9b96e89e0532cef50c5128788caaed989603</citedby><cites>FETCH-LOGICAL-c269t-89ec1181d5c2676aff218d1275d1c9b96e89e0532cef50c5128788caaed989603</cites><orcidid>0000-0003-3411-6186 ; 0000-0003-1069-9145 ; 0000-0002-5758-6351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30603754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Bao-Hua</creatorcontrib><creatorcontrib>Wang, Ying-Ying</creatorcontrib><creatorcontrib>Ning, Qiu-Li</creatorcontrib><creatorcontrib>Fan, Chao-Ying</creatorcontrib><creatorcontrib>Xi, Xiao-Tong</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Zhang, Jing-Ping</creatorcontrib><creatorcontrib>Wang, Xinlong</creatorcontrib><creatorcontrib>Wu, Xing-Long</creatorcontrib><title>An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>In order to develop promising anode materials for lithium-ion batteries (LIBs), a unique nanocomposite abbreviated as G⊥FP@C-NA, in which a carbon-coated FeP nanorod array (FP@C-NA) is vertically grown on a conductive reduced graphene oxide (G) network, has been successfully prepared via a scalable strategy. Benefiting from the distinctive structure, G⊥FP@C-NA exhibits much improved conductivity, structural stability and pseudocapacitance-boosted ultrafast electrochemical kinetics for Li storage. As a result, the G⊥FP@C-NA delivers a high Li-storage capacity (1106 mA h g-1 at 50 mA g-1), outstanding rate capability (565 mA h g-1 at 5000 mA g-1) and long-term cycling stability (1009 mA h g-1 at 500 mA g-1 after 500 cycles and 310 mA h g-1 at 2000 mA g-1 after 2000 cycles) when used as an anode material for LIBs. As expected, this kind of nanoarray structure is attractive and can also be extended to other electrode materials for various energy storage systems.</description><subject>Anodes</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Nanocomposites</subject><subject>Nanorods</subject><subject>Nanosheets</subject><subject>Rechargeable batteries</subject><subject>Storage capacity</subject><subject>Storage systems</subject><subject>Structural stability</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0c1O3DAQB3CrApWvXngAZIkLqhSw48Sxe-pqVSjSChCi52jiTNjQrJ3aDmifhNetl68DJ4_ln2cs_wk55OyUM6HPjLKeKVXo-y9kN2cFy4So8q2PWhY7ZC-EB8akFlJ8JTuCSSaqstglzzNLz_Hm55xasA68hzV9RB97A8OwpvfePVnqbCpgXKLFFxaWiDH8oGDpNEQPIUIzIF30WZ9oAzGiX6dT1yJ96uOSjgGn1hkYwfQRrMGscS5EbCkOaKJ3ZomrzUj6t7eYhocDst3BEPDb27pP_pz_upv_zhbXF5fz2SIzudQxUxoN54q3ZdpXErou56rleVW23OhGS0yClSI32JXMlDxXlVIGAFutdPqEfXLy2nf07t-EIdarPhgcBrDoplDnXArG0iWR6PEn-uAmb9PrNqpSpWaFTOr7qzLeheCxq0ffr8Cva87qTVz1XF3dvsR1kfDRW8upWWH7Qd_zEf8Bf4uSYA</recordid><startdate>20190117</startdate><enddate>20190117</enddate><creator>Hou, Bao-Hua</creator><creator>Wang, Ying-Ying</creator><creator>Ning, Qiu-Li</creator><creator>Fan, Chao-Ying</creator><creator>Xi, Xiao-Tong</creator><creator>Yang, Xu</creator><creator>Wang, Jiawei</creator><creator>Zhang, Jing-Ping</creator><creator>Wang, Xinlong</creator><creator>Wu, Xing-Long</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3411-6186</orcidid><orcidid>https://orcid.org/0000-0003-1069-9145</orcidid><orcidid>https://orcid.org/0000-0002-5758-6351</orcidid></search><sort><creationdate>20190117</creationdate><title>An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics</title><author>Hou, Bao-Hua ; Wang, Ying-Ying ; Ning, Qiu-Li ; Fan, Chao-Ying ; Xi, Xiao-Tong ; Yang, Xu ; Wang, Jiawei ; Zhang, Jing-Ping ; Wang, Xinlong ; Wu, Xing-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-89ec1181d5c2676aff218d1275d1c9b96e89e0532cef50c5128788caaed989603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Nanocomposites</topic><topic>Nanorods</topic><topic>Nanosheets</topic><topic>Rechargeable batteries</topic><topic>Storage capacity</topic><topic>Storage systems</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Bao-Hua</creatorcontrib><creatorcontrib>Wang, Ying-Ying</creatorcontrib><creatorcontrib>Ning, Qiu-Li</creatorcontrib><creatorcontrib>Fan, Chao-Ying</creatorcontrib><creatorcontrib>Xi, Xiao-Tong</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Wang, Jiawei</creatorcontrib><creatorcontrib>Zhang, Jing-Ping</creatorcontrib><creatorcontrib>Wang, Xinlong</creatorcontrib><creatorcontrib>Wu, Xing-Long</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Bao-Hua</au><au>Wang, Ying-Ying</au><au>Ning, Qiu-Li</au><au>Fan, Chao-Ying</au><au>Xi, Xiao-Tong</au><au>Yang, Xu</au><au>Wang, Jiawei</au><au>Zhang, Jing-Ping</au><au>Wang, Xinlong</au><au>Wu, Xing-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-01-17</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>1304</spage><epage>1312</epage><pages>1304-1312</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>In order to develop promising anode materials for lithium-ion batteries (LIBs), a unique nanocomposite abbreviated as G⊥FP@C-NA, in which a carbon-coated FeP nanorod array (FP@C-NA) is vertically grown on a conductive reduced graphene oxide (G) network, has been successfully prepared via a scalable strategy. Benefiting from the distinctive structure, G⊥FP@C-NA exhibits much improved conductivity, structural stability and pseudocapacitance-boosted ultrafast electrochemical kinetics for Li storage. As a result, the G⊥FP@C-NA delivers a high Li-storage capacity (1106 mA h g-1 at 50 mA g-1), outstanding rate capability (565 mA h g-1 at 5000 mA g-1) and long-term cycling stability (1009 mA h g-1 at 500 mA g-1 after 500 cycles and 310 mA h g-1 at 2000 mA g-1 after 2000 cycles) when used as an anode material for LIBs. As expected, this kind of nanoarray structure is attractive and can also be extended to other electrode materials for various energy storage systems.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30603754</pmid><doi>10.1039/c8nr08849g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3411-6186</orcidid><orcidid>https://orcid.org/0000-0003-1069-9145</orcidid><orcidid>https://orcid.org/0000-0002-5758-6351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-01, Vol.11 (3), p.1304-1312
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2163008783
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Electrode materials
Energy storage
Graphene
Lithium
Lithium-ion batteries
Nanocomposites
Nanorods
Nanosheets
Rechargeable batteries
Storage capacity
Storage systems
Structural stability
title An FeP@C nanoarray vertically grown on graphene nanosheets: an ultrastable Li-ion battery anode with pseudocapacitance-boosted electrochemical kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20FeP@C%20nanoarray%20vertically%20grown%20on%20graphene%20nanosheets:%20an%20ultrastable%20Li-ion%20battery%20anode%20with%20pseudocapacitance-boosted%20electrochemical%20kinetics&rft.jtitle=Nanoscale&rft.au=Hou,%20Bao-Hua&rft.date=2019-01-17&rft.volume=11&rft.issue=3&rft.spage=1304&rft.epage=1312&rft.pages=1304-1312&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr08849g&rft_dat=%3Cproquest_cross%3E2167859046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2167859046&rft_id=info:pmid/30603754&rfr_iscdi=true