Acoustic higher-order topological insulator on a kagome lattice

Higher-order topological insulators 1 – 5 are a family of recently predicted topological phases of matter that obey an extended topological bulk–boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2019-02, Vol.18 (2), p.108-112
Hauptverfasser: Xue, Haoran, Yang, Yahui, Gao, Fei, Chong, Yidong, Zhang, Baile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 2
container_start_page 108
container_title Nature materials
container_volume 18
creator Xue, Haoran
Yang, Yahui
Gao, Fei
Chong, Yidong
Zhang, Baile
description Higher-order topological insulators 1 – 5 are a family of recently predicted topological phases of matter that obey an extended topological bulk–boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D topological insulator, but instead has topologically protected zero-dimensional (0D) corner states. The first prediction of a second-order topological insulator 1 , based on quantized quadrupole polarization, was demonstrated in classical mechanical 6 and electromagnetic 7 , 8 metamaterials. Here we experimentally realize a second-order topological insulator in an acoustic metamaterial, based on a ‘breathing’ kagome lattice 9 that has zero quadrupole polarization but a non-trivial bulk topology characterized by quantized Wannier centres 2 , 9 , 10 . Unlike previous higher-order topological insulator realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically protected but reconfigurable local resonances. A second-order topological insulator in an acoustical metamaterial with a breathing kagome lattice, supporting one-dimensional edge states and zero-dimensional corner states is demonstrated.
doi_str_mv 10.1038/s41563-018-0251-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2162498560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2162498560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-9f20ab14486810f990e92d949269f830bc228dd0c15990b0299fb04facaf87953</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7_AC9S8OKl-pImWXISGf6CgRc9hzRNu862mUkL8783o1NB8JSQ9_m-l_dB6BzDNYZM3ASKGc9SwCIFwnC6PUBTTOc8pZzD4f6OMSETdBLCGoBgxvgxmmTApGCZnKLbO-OG0NcmWdXVyvrU-cL6pHcb17iqNrpJ6i4Mje6dT1yX6ORdV661SXyJKXuKjkrdBHu2P2fo7eH-dfGULl8enxd3y9TQTPSpLAnoHFMquMBQSglWkkJSSbgsRQa5IUQUBRjMYi0HImWZAy210aWYS5bN0NXYd-Pdx2BDr9o6GNs0urNxAUUwJzTuxCGil3_QtRt8F3-3o6QgQKO1GcIjZbwLwdtSbXzdav-pMKidXTXaVdGu2tlV25i52Hce8tYWP4lvnREgIxBiqaus_x39f9cvHoyDrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169820456</pqid></control><display><type>article</type><title>Acoustic higher-order topological insulator on a kagome lattice</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Xue, Haoran ; Yang, Yahui ; Gao, Fei ; Chong, Yidong ; Zhang, Baile</creator><creatorcontrib>Xue, Haoran ; Yang, Yahui ; Gao, Fei ; Chong, Yidong ; Zhang, Baile</creatorcontrib><description>Higher-order topological insulators 1 – 5 are a family of recently predicted topological phases of matter that obey an extended topological bulk–boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D topological insulator, but instead has topologically protected zero-dimensional (0D) corner states. The first prediction of a second-order topological insulator 1 , based on quantized quadrupole polarization, was demonstrated in classical mechanical 6 and electromagnetic 7 , 8 metamaterials. Here we experimentally realize a second-order topological insulator in an acoustic metamaterial, based on a ‘breathing’ kagome lattice 9 that has zero quadrupole polarization but a non-trivial bulk topology characterized by quantized Wannier centres 2 , 9 , 10 . Unlike previous higher-order topological insulator realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically protected but reconfigurable local resonances. A second-order topological insulator in an acoustical metamaterial with a breathing kagome lattice, supporting one-dimensional edge states and zero-dimensional corner states is demonstrated.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-018-0251-x</identifier><identifier>PMID: 30598539</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2792/4128 ; 639/766/25/3927 ; Acoustic insulation ; Acoustics ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Corners ; Dependence ; Glass ; Kagome lattice ; Letter ; Materials Science ; Metamaterials ; Nanotechnology ; Optical and Electronic Materials ; Polarization ; Predictions ; Quadrupoles ; Topological insulators ; Topology</subject><ispartof>Nature materials, 2019-02, Vol.18 (2), p.108-112</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-9f20ab14486810f990e92d949269f830bc228dd0c15990b0299fb04facaf87953</citedby><cites>FETCH-LOGICAL-c438t-9f20ab14486810f990e92d949269f830bc228dd0c15990b0299fb04facaf87953</cites><orcidid>0000-0003-1673-5901 ; 0000-0001-9928-9390 ; 0000-0002-8649-7884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-018-0251-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-018-0251-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30598539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Haoran</creatorcontrib><creatorcontrib>Yang, Yahui</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Chong, Yidong</creatorcontrib><creatorcontrib>Zhang, Baile</creatorcontrib><title>Acoustic higher-order topological insulator on a kagome lattice</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Higher-order topological insulators 1 – 5 are a family of recently predicted topological phases of matter that obey an extended topological bulk–boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D topological insulator, but instead has topologically protected zero-dimensional (0D) corner states. The first prediction of a second-order topological insulator 1 , based on quantized quadrupole polarization, was demonstrated in classical mechanical 6 and electromagnetic 7 , 8 metamaterials. Here we experimentally realize a second-order topological insulator in an acoustic metamaterial, based on a ‘breathing’ kagome lattice 9 that has zero quadrupole polarization but a non-trivial bulk topology characterized by quantized Wannier centres 2 , 9 , 10 . Unlike previous higher-order topological insulator realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically protected but reconfigurable local resonances. A second-order topological insulator in an acoustical metamaterial with a breathing kagome lattice, supporting one-dimensional edge states and zero-dimensional corner states is demonstrated.</description><subject>639/766/119/2792/4128</subject><subject>639/766/25/3927</subject><subject>Acoustic insulation</subject><subject>Acoustics</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Corners</subject><subject>Dependence</subject><subject>Glass</subject><subject>Kagome lattice</subject><subject>Letter</subject><subject>Materials Science</subject><subject>Metamaterials</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Polarization</subject><subject>Predictions</subject><subject>Quadrupoles</subject><subject>Topological insulators</subject><subject>Topology</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAUx4Mobk7_AC9S8OKl-pImWXISGf6CgRc9hzRNu862mUkL8783o1NB8JSQ9_m-l_dB6BzDNYZM3ASKGc9SwCIFwnC6PUBTTOc8pZzD4f6OMSETdBLCGoBgxvgxmmTApGCZnKLbO-OG0NcmWdXVyvrU-cL6pHcb17iqNrpJ6i4Mje6dT1yX6ORdV661SXyJKXuKjkrdBHu2P2fo7eH-dfGULl8enxd3y9TQTPSpLAnoHFMquMBQSglWkkJSSbgsRQa5IUQUBRjMYi0HImWZAy210aWYS5bN0NXYd-Pdx2BDr9o6GNs0urNxAUUwJzTuxCGil3_QtRt8F3-3o6QgQKO1GcIjZbwLwdtSbXzdav-pMKidXTXaVdGu2tlV25i52Hce8tYWP4lvnREgIxBiqaus_x39f9cvHoyDrA</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Xue, Haoran</creator><creator>Yang, Yahui</creator><creator>Gao, Fei</creator><creator>Chong, Yidong</creator><creator>Zhang, Baile</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1673-5901</orcidid><orcidid>https://orcid.org/0000-0001-9928-9390</orcidid><orcidid>https://orcid.org/0000-0002-8649-7884</orcidid></search><sort><creationdate>20190201</creationdate><title>Acoustic higher-order topological insulator on a kagome lattice</title><author>Xue, Haoran ; Yang, Yahui ; Gao, Fei ; Chong, Yidong ; Zhang, Baile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-9f20ab14486810f990e92d949269f830bc228dd0c15990b0299fb04facaf87953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/119/2792/4128</topic><topic>639/766/25/3927</topic><topic>Acoustic insulation</topic><topic>Acoustics</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Corners</topic><topic>Dependence</topic><topic>Glass</topic><topic>Kagome lattice</topic><topic>Letter</topic><topic>Materials Science</topic><topic>Metamaterials</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Polarization</topic><topic>Predictions</topic><topic>Quadrupoles</topic><topic>Topological insulators</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Haoran</creatorcontrib><creatorcontrib>Yang, Yahui</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Chong, Yidong</creatorcontrib><creatorcontrib>Zhang, Baile</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Haoran</au><au>Yang, Yahui</au><au>Gao, Fei</au><au>Chong, Yidong</au><au>Zhang, Baile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic higher-order topological insulator on a kagome lattice</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>18</volume><issue>2</issue><spage>108</spage><epage>112</epage><pages>108-112</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Higher-order topological insulators 1 – 5 are a family of recently predicted topological phases of matter that obey an extended topological bulk–boundary correspondence principle. For example, a two-dimensional (2D) second-order topological insulator does not exhibit gapless one-dimensional (1D) topological edge states, like a standard 2D topological insulator, but instead has topologically protected zero-dimensional (0D) corner states. The first prediction of a second-order topological insulator 1 , based on quantized quadrupole polarization, was demonstrated in classical mechanical 6 and electromagnetic 7 , 8 metamaterials. Here we experimentally realize a second-order topological insulator in an acoustic metamaterial, based on a ‘breathing’ kagome lattice 9 that has zero quadrupole polarization but a non-trivial bulk topology characterized by quantized Wannier centres 2 , 9 , 10 . Unlike previous higher-order topological insulator realizations, the corner states depend not only on the bulk topology but also on the corner shape; we show experimentally that they exist at acute-angled corners of the kagome lattice, but not at obtuse-angled corners. This shape dependence allows corner states to act as topologically protected but reconfigurable local resonances. A second-order topological insulator in an acoustical metamaterial with a breathing kagome lattice, supporting one-dimensional edge states and zero-dimensional corner states is demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30598539</pmid><doi>10.1038/s41563-018-0251-x</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1673-5901</orcidid><orcidid>https://orcid.org/0000-0001-9928-9390</orcidid><orcidid>https://orcid.org/0000-0002-8649-7884</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2019-02, Vol.18 (2), p.108-112
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2162498560
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/766/119/2792/4128
639/766/25/3927
Acoustic insulation
Acoustics
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Corners
Dependence
Glass
Kagome lattice
Letter
Materials Science
Metamaterials
Nanotechnology
Optical and Electronic Materials
Polarization
Predictions
Quadrupoles
Topological insulators
Topology
title Acoustic higher-order topological insulator on a kagome lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20higher-order%20topological%20insulator%20on%20a%20kagome%20lattice&rft.jtitle=Nature%20materials&rft.au=Xue,%20Haoran&rft.date=2019-02-01&rft.volume=18&rft.issue=2&rft.spage=108&rft.epage=112&rft.pages=108-112&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-018-0251-x&rft_dat=%3Cproquest_cross%3E2162498560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169820456&rft_id=info:pmid/30598539&rfr_iscdi=true